On Grain Boundary Sliding and Diffusional Creep

R. RAJ AND M. F. ASHBY

The problem of sliding at a nonplanar grain boundary is considered in detail. The stress
field, and sliding displacement and velocity can be calculated at a boundary with a shape
which is periodic in the sliding direction (a wavy or stepped grain boundary): a) when de-
formation within the crystals which meet at the boundary is purely elastic, b) when diffu-
sional flow of matter from point to point on the boundary is permitted. The results give
solutions to the following problems. 1) How much sliding occurs in a polycrystal when
neither diffusive flow nor dislocation motion is possible? 2) What is the sliding rate at a
wavy or stepped grain boundary when diffusional flow of matter occurs? 3) What is the
rate of diffusional creep in a polycrystal in which grain boundaries slide? 4) How is this
creep rate affected by grain shape, and grain boundary migration? 5) How does an array

of discrete particles influence the sliding rate at a grain boundary and the diffusional
creep rate of a polycrystal? The results are compared with published solutions to some

of these problems.

1. INTRODUCTION

Our experiments’ have convinced us that the rate at
which sliding occurs at a stressed grain boundary is
frequently determined by the boundary shape. Briefly,
the cogent observations* of the sliding at grain bound-

*Some of which have been reported also by other investigations; see the re-
views of R. N. Stephens (Met. Revs, 1966, vol. 11, p. 129) and R. L. Bell and
T. G. Langdon: Interfaces, Butterworths, 1969.

aries in copper and silver are:

a) that a number of specimens cut from the same bi-
crystal show quite different steady-state sliding rates,
b) that the sliding rate changes when the boundary

alters its shape by migrating,

¢) that the precipitation of hard particles into a
boundary slows down the steady-state sliding rate, and

d) that the activation energy for grain boundary slid-
ing is sometimes (but not always) equal to that for bulk
diffusion.

Although more exotic explanations are possible, we
have been able to explain, quantitatively, almost all our
observations by supposing that the sliding rate is con-
trolled by the accommodating processes where it devi-
ates from a perfect plane, not by any intrinsic property
of the boundary itself.

To grasp the physical meaning of the calculations
contained in this paper, it may be helpful to visualize
two crystals which meet at smooth, but nonplanar sur-
faces which mate exactly with each other. Between the
mating surfaces is an extremely thin layer of viscous—
though not necessarily Newtonian viscous—oil, modeling
the intrinsic mechanical properties of the grain bound-
ary. This layer transmits all normal stresses, but al-
lows shear stress to relax with some characteristic
relaxation time. The layer rarely controls the rate of
sliding, though it is possible to devise experiments
when it should (Section 2). Sliding generates incompat-
ibilities where the boundary deviates from a perfect
plane; almost always it is the accommodation of these
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incompatibilities which controls the extent and rate of
sliding.

The accommodation may be purely elastic: as sliding
proceeds, elastic stresses build up at asperities on the
boundary, or at places where the boundary has curva-
ture, steps, or meets other boundaries at triple lines.
The stresses ultimately grow until the appropriate com-
ponent of them balances the applied stress, when slid-
ing stops. At high temperatures, a second accommo-
dating process is possible. The stresses developed at
a nonplanar boundary by sliding can set up a diffusive
flux of matter from compressed parts of the boundary
to those in tension. A steady-state, diffusion-controlled,
sliding then occurs. There is a third alternative. If the
stresses in crystals which the boundary separates be-
come sufficiently large, plastic flow involving disloca-
tion motion can accommodate the incompatibility due to
sliding.

This paper describes solutions for the stress field,
diffusive fluxes, and rates of sliding or (where appro-
priate) strain-rates resulting from sliding at nonplanar
grain boundaries. The two-dimensional problem is
solved for a boundary of arbitrary shape, described by
a Fourier series, subjected to a shear stress. Later,
a number of specific and simple applications are de-
scribed; these can be understood without understanding
the solution of the general problem. We attempt to
answer questions such as: How fast does a serrated
boundary slide? How much sliding occurs when the ac-
commodation is elastic? What is the strain-rate in a
polycrystal which deforms by sliding with diffusional
accommodation? How does grain shape affect this
rate? How do grain boundary precipitates change the
rate of grain-boundary sliding? How does grain-bound-
ary migration influence sliding? Our results are com-
pared with solutions to some of these problems pre-
sented by other authors.

The paper explores, in detail, aspects of grain-
boundary sliding which can be treated by continuum
theories of elasticity and diffusive flow. Microscopic
or atomistic aspects of the sliding process which can-
not be incorporated into continuum theories, and which
are still imperfectly understood, can sometimes be
important. A discussion of some of the relevant micro-
scopic processes is given by Gleiter etal 2 and Ashby.’

VOLUME 2, APRIL 19711113



2.1) SLIDING WITH ELASTIC ACCOMMODATION
The Two-Dimensional Calculation

Imagine a shear stress, 7,4, to be applied to a non-
planar boundary like one of those shown in Fig. 2.1.
The shape of these boundaries, or of any boundary
which has a two-fold axis of symmetry and bounded
first derivatives, can be described by a cosine Fourier
series

& 2
x= ), hy cos Tﬂ ny (1]
1

If the elastic constants of the two crystals which
meet at the boundary were infinite, the shear stress
would cause no sliding. Finite elastic constants, on

the other hand, permit some sliding since relative
normal displacements of the two crystals at the bound-
ary can be accommodated by local elastic deformation
of the crystals themselves. This leads (via Hookes
law) to stresses which tend to oppose further sliding,
and which, growing as sliding continues, ultimately
balance the applied stress and stop the sliding. When
this equilibrium state is reached, only normal
stresses g, , Fig. 2.1, act across the boundary plane:
the ability of the boundary to slide has relaxed the
shear component of stress.

Appendix I contains a calculation which describes
the extent of this kind of sliding, and the internal
stress-field generated by it. The total relative dis-
placement, U, in the y direction, of the two crystals
before the internal stress balances the applied stress,
and sliding stops, is

Fig. 2.1—Four examples of nonplanar
boundaries. A shear-stress Tg. causing a
relative sliding displacement U, generates
a distribution of normal stress g; acting
across the boundary surface.
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This sliding is rvecoverable; when the stress is re-
moved the boundary will slide back. The normal

stress acting on the boundary plane is given by

(2]

T Zl) n’h, sin 2—;1 ny

T Zl) nshrzl
Here v is Poissons ratio, E Young’s modulus, A the
basic wavelength of the boundary shape, Fig. 2.1,
T, the applied stress, and &, the Fourier coefficients
of the boundary shape. If desired, the entire stress
field in both crystals (not just in the boundary plane)
can be obtained by the method of Appendix I.

(Before equilibrium is reached, sliding proceeds
with a velocity which reflects the intrinsic properties
of the boundary itself: the viscosity of the “‘oil film”’
referred to earlier. Damping experiments which meas-
ure the relaxation time, or some related property,
when the accommodation is purely elastic seem to be
the only way to measure the intrinsic mechanical prop-
erties of the boundary).

3]

o'n:__

2.2) EXAMPLES AND DISCUSSION BASED ON
THE RESULTS OF SECTION 2.1

The results given as Eqgs. [2] and [3], though com-
plicated, have considerable generality. They give the
elastic sliding displacement, and the stress distribu-
tion, at any boundary with a symmetrical shape. They
are accurate if the amplitude %/2 of the boundary wavi-
ness is small compared to its wavelength A and remain
a reasonable approximation even when % is as large as
A/2.

a) The Sinusoidal Boundary

A sine wave is often a good approximation for the
shape of a wavy boundary. It is described by the first
term of a Fourier series; thus the boundary of Fig.
2.1(d) is described by

_k
¥=3

2
cos — y
so that 7, = h/2 and all other %, are zero. An applied
shear stress 7, will then cause a total sliding displace-
ment given by Eq. [2] as
4104 A°

U= 3

7 Ta

W E

where E is Young’s modulus for the crystal. This
amount of sliding generates a local stress o, acting
across, and normal to, the boundary plane. This nor-
mal stress is given by Eq. [3]; it varies sinusoidally
with position in the following way:

27

[4]

2 T N .
on:—;—z—smTy 5]

b) The Internal Stresses Generated by Sliding

Sliding with elastic accommodation generates a dis-
tribution of normal stress acting across the boundary
surface and given by Eq. [3]. The stress has sharp
peaks where the slope of the boundary changes abruptly.
Two examples are shown in Fig. 2.2: that of a saw-tooth
boundary and stepped boundary. Below the boundary
shapes is shown the normal stress g, acting on the
boundary plane. When accommodation is elastic, the
stress ¢, rises sharply at the corners of the saw-tooth
shape, and at the steps, where they reach values of
many times greater than the applied stress 7,.

The lowest curves of the figure show how the stress
is redistributed when diffusional accommodation (dis-

Fig. 2.2—Sliding at the saw-toothed, and
at the stepped boundary shown above

generates a distribution of normal stress
on acting across the boundary plane. The
distribution when accommodation is
elastic differs totally from that when ac-
commodation is by diffusion,
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Fig. 2.3—A shear stress applied to a polycrystal causes
sliding along nonplanar surfaces like that shown above. If the
array of grains is idealized by a hexagonal array, two ortho-
gonal sets of sliding surfaces (Modes 1 and 2) exist as shown
below.

cussed in Section 3) is allowed: the redistribution to-
tally changes the stress distribution. It is not generally
realized that standard elastic solutions, such as those
for an elastic crack, are not applicable to problems of
grain boundary sliding at high temperatures (when dif-
fusion is possible) because of this redistribution of
stress.

¢) Deformation of a Polycrystal: Comparison
with the Results of Zener* and Ke®

Consider the sliding which occurs when a shear
stress 7, is applied to a polycrystal of grain sized,
like that shown in Fig. 2.3. As a first approximation,
(though it is a poor one) the path shown on the figure
can be approximated by a sine wave of wavelength %d
and height (k) of d /2. Then Eq. [4] shows that the net
sliding displacement U/, in a direction parallel to the
stress, is given by

U = 0.87(1 — v3)d % [6]
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More exactly, the two orthogonal paths labeled ‘‘Mode
1’> and ‘“Mode 2”’ on the figure can be described by
Fourier series, and the sliding displacement evaluated
for each one properly by applying Eq. [2]. The result
has precisely the same form as Eq. [6], with the con-
stant 0.87 replaced by 0.34 for Mode 1 and 0.8 for Mode
2. Taking typical values for the grain size d ~ 1077 cm
and 7,/E = 107, we obtain for the total sliding dis-
placement

U ~ 50A

The point here is that a boundary in a polycrystal
can slide only an extremely small distance before in-
ternal stresses develop which oppose further sliding.
The intrinsic viscosity of the boundary itself (the prop-
erty of the “‘oil film’’) will only influence the rate of
sliding when the sliding displacements are less than
this. This viscosity may be detected in damping exper-
iments like those of K&° when the sliding displacements
are of order 10™° c¢m, but will very rarely be measur-
able by normal macroscopic experiments. Instead, the
rate at which macroscopic sliding occurs will be lim-
ited by the rate at which one of two accommodation
processes—diffusion or dislocation motion—can occur.

Both the sliding modes shown in Fig. 2.3 contribute
to the anelastic strain in the specimen. Since they are
orthogonal, the net strain is the sum of the sliding dis-
placements of the two modes, divided by the grain
size,d:

yANEL = 1.14(1 - ) 7€ = 0.57(1 - ) l“a- 7]
where u is the unrelaxed shear modulus. It is inde-
pendent of grain size. This anelastic strain results in
an apparently lower shear modulus pg, given by

UR _ 1
f TSI -+ 1] (8]

If Poisson’s ratio is taken as ;— , the ratio of ug /u is
0.72.

The only comparable calculation is that of Zener
and K&."”° They considered sliding with elastic accom-
modation for spherical grains (which, unlike our hex-
agonal prisms, don’t pack to fill space). Their result

Hf = -g—g-i—%;— (Zener, K&)
reduces to 0.62 when Poisson’s ratio is set equal to ;~
It is not clear at present whether the difference be-
tween the two results reflects the difference in grain
shape, or is caused by the approximation inherent in
our treatment.

3.1) SLIDING WITH DIFFUSIONAL
ACCOMMODATION

The Two-Dimensional Problem

Steady-state sliding is possible if a diffusive flux of
atoms, or vacancies, accommodates the relative dis-
placements of the two crystals.

A simple example is shown in Fig. 3.1. A sliding
rate U in the y direction translates the upper half
crystal from the position shown by the full line to that
shown by the broken line, in time A¢. A sliding dis-
placement UA¢t can be resolved, locally, into compo-
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nents parallel and normal to the boundary. Steady-state
sliding then requires that the net flux of atoms into or
out of each element of the boundary precisely account
for the normal component of the sliding displacement
therve. This flux of atoms (or counterflux of vacancies)
is supplied by volume diffusion through the two crys-
tals and by diffusion in the plane of the grain boundary
itself. The normal stress o, acting on the boundary
plane is now determined by the requirement of conti-
nuity: it is that stress distribution which will drive
diffusive flow at a rate that exactly compensates for
the normal component of displacement at each point on
the boundary. In general, this distribution of normal
stress is quite different from that obtained in Section
2, when no diffusion was permitted.

Appendix 2 contains a calculation which describes
this kind of sliding, allowing transport by both volume
and by grain-boundary diffusion. For the general
boundary described by Eq. [1], the important results
are as follows. The steady-state, diffusion-controlled
sliding rate, U, is given by

2 140 1 (9]
T kT i nz /h?
1 {1 7o DB}
L ]

U= A
n A Dy

A
Tz

hD”

where 1 is the total height of the boundary shape, as
shown in Figs. 2.1 and 3.1. The normal stress in the
boundary plane, ¢, (0, y) is given by

{(i—%sin 2—; ny}
T;}): E { ﬁzé/hZ }
P50 )

0,0, 9) = — [10]

Here 7, is the applied shear stress, Q the atomic vol-
ume, D, the bulk self-diffusion coefficient, Dg that for
boundary diffusion, § the thickness of the grain-bound-
ary diffusion path, X the basic periodicity of the bound-
ary, and h, the Fourier coefficients describing the
boundary shape. The entire stress field within each
crystal if desired, can be obtained by the method of
Appendix 2.

3.2) EXAMPLES AND DISCUSSION BASED ON
THE RESULTS OF SECTION 3.1

The two results given as Eqs. [9] and [10], though
complicated, have great generality. They allow the
diffusion-accommodated sliding rate, and strain dis-
tribution, at a boundary of any arbitrary shape to be
calculated. They become increasingly exact as the
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Fig. 3.1—Steady-state sliding with diffu-
sional accommodation.

ratio of the amplitude %/2 of the boundary to its wave-
length X decreases. If 1 is about A /2, the error is of
the order v2. This level of accuracy is almost always
adequate since diffusion coefficients, particularly
those for boundary diffusion, are less accurately known
than this.

a) The Sinusoidal Boundary of Wavelength x
and Amplitude /2

The sinusoidal boundary is a useful approximation
for any boundary with an obvious periodicity and am-
plitude. Its shape, illustrated by Fig. 2.1(d), is de-
scribed by

x =" cos 27
2 x Y

The sliding expression, Eq. [9], then reduces to

= _ 8 1,0 70 Dp
= = 1a2° b
U 7 BT h2 Dy, {1 * Dv] [11]

Let the dimensionless quantity (s8/r)/(Dg/D,) = M
Then if M is large compared to unity, transport is
mainly by boundary diffusion, and the sliding rate be-
comes independent of ), and dependent on amplitude as
1/h®. When M is small compared to unity, volume dif-
fusion is dominant, and the sliding vate vavies as \/h°.
In general a short wavelength and a low temperature
favor transport by boundary diffusion; a long wave-
length and high temperature favor volume diffusion.
Fig. 3.2 shows the sliding rate, in units of
(8/1)(7,R/ET)D, /1), plotted against the ‘“waviness’’ of
boundary, &/, for various values of M. It demon-
strates that, for a given M, the sliding rate decreases
rapidly as the boundary becomes increasingly non-
planar.

The distribution of normal stress, o, , acting on the
boundary during steady-state sliding, from Eq. [10], is

g, = —2 —‘Lh)-‘- sin ﬂ 3
This is precisely the same stress distribution that
would have formed if no diffusion had been permitted,
Eq. [5]. The sinusoidal boundary is unique in this re-
spect; in all other cases, of which examples are given
below, the stress distribution changes when diffusion
occurs.

For a quick estimate of the sliding rate and stresses,
at a boundary of simple shape with an obvious basic
wavelength and amplitude (like those of Fig. 2.1) these
expressions ave adequate. They may differ by a factor
of two from mere exact solutions. Their usefulness
and wide applicability stems from the fact that diffu-
sional redistribution of matter quickly removes the

(12]
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higher terms in the Fourier series describing the
stresses at the boundary, leaving only that with the
basic wavelength, x, associated with the boundary
shape. (This sort of simplification should not be ap-
plied when accommodation is elastic, since no mecha-
nism then exists for smoothing out the stress distribu-

10° | | l
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Fig. 3.2—~The steady-state sliding rate at a boundary of sinu-
soidal shape, as a function of amplitude.

tion.) When, however, the basic wavelength is less
obvious (e.g. a boundary containing particles with size
w and spacing 1), expressions {11]and [12] should not
be used. Instead a complete solution using Eq. [9], or
one using results given in Section 3.2d, or Section 4
should be used.

b) The Internal Stress Associated with
Diffusional Accommodation

The normal stress g, acting across the boundary
plane is given by Eq. [10]. As an example, this stress
has been evaluated for two boundary shapes: the saw
tooth and the stepped boundary. The results are shown
at the bottom of Fig. 2.2, The normal stress differs
from that formed when accommodation is purely elastic,
because diffusion smooths out, and redistributes, the
normal stress as described above.

¢) The Periodic Stepped-Boundary: Comparison
with the Results of Gifkins and Snowdon®

Consider the rate of sliding of the regular-stepped
boundary shown in Fig. 3.3(a): by ‘“‘regular’ we mean
that the steps are equally spaced.

If transport is by grain-boundary diffusion only,
the basic rate equation, Eq. {9], reduces to

=2 T8 6 _ Dp (13]
ET K & 2
500

1
The square-wave boundary, shown in Fig. 3.3(a) is de-
scribed by the Fourier series

oo

2
x= )5 h, cos —)\ﬂ ny
I

with
hy _ 2 nn
n omn o2

Fig. 3.3—Above: a regularly stepped
boundary; below: a more general stepped
boundary.

(b) =
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U=4 % 2 DB
Note that the square-wave shape slides at exactly half
the rate of a sinusoidal shape with the same base-wave-
length and amplitude, Eq. [11], and that, as before, the
sliding rate is ¢ndependent of wavelength—in this case
the step spacing—when transport is by boundary diffu-
sion.

Gifkins and Snowdon® give an approximate calculation
for the sliding rate at a boundary of this shape, assum-
ing boundary-diffusion only. Their result differs from
ours by a factor x/k which can be large, and is incor-
rect (Ashby etal.’).

We can also evaluate the sliding rate when volume
diffusion is dominant (Gifkins and Snowdon did not con-
sider this). This result* when Dy > Dg (n6/)) is given

(14]

*Since steps do not have infinitely sharp corners, the Fourier series describing
the stepped shape may be terminated after a finite number of terms, We have
made a practice of evaluating the sums of Eqs. [9] and [10} for the first 50 terms
of the series.

by

v-07%ad X p,
The sinusoidal boundary, Eq. [11], is a useful standard
for comparison: in this case the stepped boundary
slides at a rate which is slower by a factor of 0.3 than
does the sinusoidal boundary of the same height and
wavelength.

(15]

d) The General Stepped-Boundary, Allowing
Both Boundary and Volume Diffusion

We can now consider the general case of sliding at
a boundary containing rectangular steps in it, as a
function of the height, i, width w, and spacing 1 of the
steps, Fig. 3.3(b). This wave-shape is described by
the Fourier series

x= 2, h,,cos%jlny
1

with (16]
By o 2 g mTw
h nw si A
and the expression for the sliding rate becomes:
= 2 1,0 2 D
= 2 g%t v 1
U1rkTEi 2 . nrw\ [17]
oo 7 sin T
2
1 — +M

where, as before,
- .0 Dp
M= Ty D,
Consider first the case of transport by boundary-
diffusion only, for which M > 1. The sliding rate then
becomes

& _ T,.8 _5- (@)
U=2 _(L—kT P DpF, X

(18]

where

Fl(txi)).: i(

1

1

2 wy
— ginny =
nw A
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Fig. 3.4—The summationFi(w/A) for boundary diffusion.

For a given value of w/x, the function F; is a constant,
and the sliding rate depends only on the height 7 of the
steps. We have evaluated F, as a function of w /A, and
plotted the result as Fig. 3.4 [It shows that narrow
“bumps’’ inhibit sliding far less than the wider ones].
For a given value of w /A, the corresponding value of
F, can be read from this plot and plugged into Eq. [18].
For the regular-stepped boundary, for instance, w/x

= 0.5, and Filw/A) = 2, leading to the result of Section
c¢) Eq. [14].

In general, no regime exists for which transport is
by volume diffusion only. Mathematically, M can play
an important role in the summation of Eq. [17] even
when it (M) is small. Physically, the reason for this
is that even when transport over the basic wavelength
A is by volume diffusion, transport round small steps
may Still occur mainly by boundarvy diffusion, and it is
this second process that is rate-controlling. Our Eq.
[17] correctly takes account of this effect, but it makes
the simple presentation of the results predicted by the
equation difficult. For this case:

= 2 7,0 X w
= 2 fast A =
U= r hZD”FZ(A’M)
(18]
w 1
FZ(X’M — sin nw ~)2
ad n
Z i
1 — +M
n

Values of F,w/», M) have been computed for a sum of
50 terms and the results, plotted on a logarithmic
scale, are given in Fig. 3.5, When the geometry of the
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Fig. 3.5—The summation Fy(w/A, M).

boundary is known, and the value of M is known (or
can be guessed) then the sliding rate is calculated
simply by picking off, from Fig. 3.5, the correspond-
ing value for the summation, which is then plugged into
Eq. [19].

e) Creep of a Polycrystal by Grain Boundary Sliding,
with Diffusional Accommodation: Comparison
with Results Due to Herring® and Coble,’ Lifshitz,"
Gibbs,"" and Green'?

Consider the deformation of the idealized polycrys-
talline aggregate shown in Fig. 3.6. When stressed as
shown in the figure, this idealized array deforms by
two modes of sliding. These are shown by the heavy
lines on the figure, and are labeled as Mode 1 and
Mode 2. They are orthogonal, so that the net (engineer-
ing-shear) strain-rate, 7, is the sum of the strain-
rates contributed by each mode. In this way all pos-
sible flux paths through the grains of the polycrystal
(broken lines on Fig. 3.6) are correctly included.

As pointed out earlier, a good estimate of the sliding
rate at a boundary with an obvious basic periodicity is
given by approximating its shape by a sine wave of the
same periodicity and amplitude. Imagine, then, that
both modes are replaced by sine waves of total height
h ~ d/2 and wavelength A =~ 2d. The sliding rate, U/,
for one mode is then given by Eq. [11] and the engineer-
ing-shear strain rate, which is the sum of the contri-
butions from the two modes, is

20 _ 1,0 1 5 Dp
YIS TR dzD“{1+)\Dv}

{20}
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Fig. 3.6—A polycrystal, idealized as an array of hexagons
can deform by sliding in two orthogonal modes. Broken lines
show the vacancy flux.

where ¢ = 40. If, instead, the shapes of the two modes
shown on Fig. 3.6 are described by Fourier series, the
rate of sliding for each is calculated properly via Eq.
[9], and the net strain-rate calculated from the sum,
the only change involves the constant ¢: it is then equal
to 42.

To compare our result with those of other authors,
it is convenient to reexpress it as follows. A polycrys-
tal which deforms by grain-boundary sliding with diffu-
sional accommodations behaves as if it had a Newto-
nian viscosity ,n, defined by

Y = 1@ 21

Y=g [21]
where 7, is the applied shear stress, and where, for
volume diffusion

1 d°T
= 55 22
U 42 DU‘Q [ ]
and for boundary diffusion
3
1 d°kT (23]

B = 133 5Dg

The deformation of a polycrystal described by these
equations is true ‘‘diffusional’’ ov “‘Nabarvo-Herving”’
creep. It is quite clear from the derivation presented
here that grain boundayvy sliding is an integral part of
diffusional creep, and that (as Lifshitz' has pointed
out) without grain boundary sliding no incompatibilities
develop, and no diffusional creep is possible.

Herring,8 Coble,’ and Green™ have calculated the
diffusional strain-rate, and thus the viscosity, of a
single spherical grain, when the shear-stress in the
plane of its surfaces is relaxed—that is, when grain
boundary sliding is permitted. Herring considered
transport by volume diffusion, and obtained in our
notation
’r
o8

(Y
~

(Herring)

8l
S

Ty =
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Coble considered* transport by boundary diffusion,

o
*Gifkins'® has also presented a calculation of diffusion-controlled deformation, /ﬂ\
which, physically, is equivalent to that of Coble.

obtaining [ ] [ | pd
_ 1 d%T

B = 141 5Dg 0
(after correcting for a factor of 7 which was omitted

from his paper). These two results are essentially _
identical with our Eqs. [22] and [23]. ]
h

(Coble) W

A simplified version of the rather complicated cal- = =2
culation of Lifshitz, for the compatible deformation of
a polycrystal by volume diffusion, has been presented
by Gibbs.'' He obtains A
1 d%T ) I I ___\LWAVELENGTH Am2w

M = 3¢ 0,0 (Gibbs)

which is again essentially identical to Herring’s result 7 |
and to our Eq. [22]. -
Gibbs, Lifshitz, and our calculation start with a \U/
space-filling array of grains, and allow them to deform
in a compatible way, so that they fit together both be- Fig. 3.7—A polycrystal with elongated grains.
fore and after deformation. A physically real conse-
quence of this is that the stress field within the poly- test the grains rotate, and need not show any elongating
crystal is not uniform, but varies greatly from point to  or change of shape.
point in a way which can be calculated, see Appendix

[~
~AMPLITUDE h= g

] ) ]

2. . : :

The calculations of Herring, Coble, and Green are f) The Etfect of Grain Shape on Diffusional Creep
less realistic: they avoid the rather complicated com- Grain shape can have a profound effect on the rate
patibility problem by treating a grain with a spherical of diffusional creep—that is, of sliding with diffusional
shape: a shape which does not stack to fill space. Her- accommodation—of a polycrystal. Consider the system
ring correctly points out that the strain-rafe calcu- of elongated grains shown in Fig. 3.7, in which the
lated in this way must be very close to that for equi- grains have height H and width W. Define the aspect
axed, space-filling grains, because diffusion smoothes ratio R of a grain as R = H/W, and the grain sized as
out the internal stress field: that is why all the calcu- d = (HW)"*. Suppose the system is subject to equal,
lations quoted above gave very similar answers. But principal tensile and compressive stresses g: these
if one wishes to calculate the internal stress field are equivalent to a shear 7, = o at 45 deg to the prin-
properly, a calculation that incorporates continuity of cipal stresses. To a sufficient approximation, the
matter at all stages of the deformation (which those of sliding can be considered to occur on a path of wave-
Herring, Coble, and Green do not) is essential. Our length 2W and of height H/2.
treatment has the further advantage that the effect of Two regimes emerge, depending on the magnitude
grain shape can be calculated, Section 3.2f. of the aspect ratio. Applying the argument which led

We wish to conclude this section by reemphasizing to Eq. [20] to the elongated grains yields
that ‘“Nabarro-Herring’’ and ‘‘Coble’’ creep, (which
together we call diffusional creep) is identical with y=cTat L Dy 78 Dp_ (24]
grain-boundary sliding with diffusional accommodation.* kT d* |R® d R

*A discussion of the role of grain boundary sliding in deformation of polycrys- where ¢ is a constant of about 42. This expression is
talline materials is given by Gibbs."* valid only for grains of low aspect ratio for which

H ~ W, since otherwise the approximations inherent in
Eq. [9] are no longer valid. We note, therefore, that
for smulil deviations from an equiaxed shape, the
strain-rate attributable to volume and boundary diffu-
sion respectively vary strongly with grain shape:

It has been suggested occasionally that grain-boundary
sliding and diffusional creep are independent deforma-
tion processes, which add. If diffusion is the only
mechanism of accommodating the incompatibilities
caused by grain-boundary sliding, diffusional flow and

sliding are not independent. They are coupled, and the Y 1
resulting deformation is corvectly described eithey as [CRaY
‘“diffusional creep’’ or as “‘grain boundary sliding forR =1 [25]

with diffusional accommodation®’. The resulting strain-

rate is given by Eq. [20]. ¥ o« —13]—2

If deformation occurs by equal amounts of sliding on R
two orthogonal systems, as described above, then in a From a practical viewpoint, the diffusional creep of
tensile or compression test, grains do not rotate but a system of very elongated grains (H > W) is much
they do change shape, becoming elongated along the more interesting. Such structures are obtained in
tensile direction. If sliding occurs mainly or com- doped tungsten wires and T-D nickel sheet. An ap-
pletely by one mode, then in a tensile or compression proximate calculation of the type given by Cottrell™
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yields a result appropriate to very elongated grains
(Ashby and Raj'):

. 7,0 1D 6 D

v = 16 -5 E{‘R'LJngﬁz} [26]
that is;

. oL

w R forR » 1 [27]

7./B OcRuz

Tote that diffusional creep is minimized by a large
grain size with a large aspect-ratio H/W. Since the
aspect ratio can be as large as 100, it can significantly
change the creep rate.

g) The Effect of Grain Boundary Migration on the Rate
of Sliding and Diffusional Creep

Grain boundary sliding in a bicrystal is very sensi-
tive to boundary migration. Migration changes the
boundary shape, so that the amplitude % and wavelength
A describing the shape change with time. Then, as ref-
erence to Eq. [11] shows, the sliding rate will fluctuate
with time. We believe that this sort of migration is the
cause of the irregular and irreproducible rates of slid-
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ing often found in bicrystals of pure metals, and de-
scribed by Stephens' in his review.

The rate of sliding with diffusional accommodation
(diffusional creep) of a polycrysial is less sensitive
to boundary migration. Migration may lead to grain
growth at constant shape: then the creep rate decreases
with time because 4, Eq. [20], is increasing. Or it may
lead to change of grain shape, such that boundaries
align themselves parallel to the planes of maximum
shear stress; though uncommon, such alignment ap-
pears during high temperature fatigue, and leads to a
rapid increase of strain rate. Finally, local migration
may occur with no net change of grain size or shape.
The average shape of the path along which sliding oc-
curs, like those sketched Fig. 3.6, does not change with
time, and the sliding rate with diffusional accommoda-
tion is unaffected by the migration.

4.1) SLIDING WITH DIFFUSIONAL
ACCOMMODATION

The Three-Dimensional Problem

Up to this point we have considered boundary shapes
which were periodic in only one direction—the direction
of sliding. But a boundary containing a periodic array
of precipitate particles or inclusions, which act like

TP 7.
Iy

Fig. 4.1—(a) A cube-shaped particle in a
grain boundary. (b) The electrostatic
analog of (a).

GRAIN
BOUNDARY
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pegs which penetrate the boundary plane, has periodic-
ity in fwo directions. We now consider the problem

of the rate of diffusion-controlled sliding at a boundary
such as this, one part of which is shown in Fig. 4.1(a).
This figure shows a section through single cube-shaped
particle, of size ¢. When an applied shear stress 7,
causes sliding, normal stresses g, appear at the faces
of each particle. The array of particles then behaves
like a periodic array of discrete sinks and sources

for vacancies. The diffusion problem can be solved at
a sufficient level of approximation by an electrostatic
analog: the diffusive flow round a particle, driven by
the normal stresses o, is analogous to the current
flow driven by a suitable distribution of charge, Fig.
4.1(p). This analogy is developed in Appendix 3, where
it is shown that the rate of sliding, U, at a plane bound-
ary containing an array of discrete impermeable par-
ticles of size a and spacing  is given by

. 2
U= 1.6 e LDU{1+559ﬁ} [28]

kT a3 a D‘L)
Here 7, is the applied shear stress { the atomic num-
ber, D, the coefficient of volume self-diffusion, Dg
that for diffusion in the interface between the particle
and the matrix, 6§ the thickness of this interface, and
kT is Boltzmann’s constant times the absolute tem-
perature.

Slight modifications of the expression are reguired
if the particle itself transmits a diffusive flux, and
when the particle is coherent in one grain. These are
discussed in the Appendix. The equations should not be
treated too literally. The approximations involved in
their derivation could involve errors of up to a factor
of 2. Since diffusion coefficients are not known to this
level of accuracy, we feel that the equations are ade-
quate for any practical situation.

4.2) EXAMPLES AND DISCUSSION BASED ON
THE RESULTS OF SECTION 4.1

a) The Boundary Containing Discrete Particles:
Comparison With the Result of Gibbs™'

If the particles are sufficiently small, the quantity

% Dg » 1

a D,
and the sliding rate is limited by boundary diffusion.
(As a rough rule-of-thumb, we anticipate that a particle
size of less than 1000A will lead to boundary diffusion
control; a size of more than 10 u to volume-diffusion
control; and a size inbetween to control by either vol-
ume or boundary diffusion). The sliding-rate is then

. 81 2

Note that big particles (large a) slow down the sliding
rate more effectively than the same volume fraction of
small particles.

One earlier calculation of the effect of precipitates
on grain boundary sliding exists. Gibbs'' considered
sliding limited by boundary-diffusion only, and, by a
somewhat less rigorous argument than ours, obtained
(in our notation)

(29]

2 2
UBz._._TG_&)\_‘léDB’

T, (Gibbs)
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In all important respects this is identical with our
Eq. [29]. The constant differs by a factor of 4.

b) Does Grain Boundary Precipitation Limit the Rate
of Diffusional Creep in a Polycrystal?

Continuum calculations, with which this report is
mainly concerned, predict that pariticles do very lit-
tle to slow up the macroscopic diffusional cveep of a
polycrystal. This conclusion, given earlier by Gibbs,"
can be reached by comparing the sliding rate of a plane
boundary containing an array of particles, Eq. [28],
with that for a path through a polycrystal, Section 3.2e.
For all realistic values of particle size and spacing,
it turns out that the grain size, not the particle size,
limits the sliding rate.

This conclusion ignores the microscopic aspects of
diffusional creep. There is some evidence that a dis-
persion of particles can restrict the ability of a grain
boundary to emit or absorb vacancies, and can inter-
fere in other ways with the details, at an atomic level,
of the sliding process (Ashby®). Crudely, the result is
to introduce a threshold stress below which no diffu-
sional creep can occur.

More important, an array of particles (or even of
bubbles or voids) can profoundly alter the grain shape,
and with it, the sliding rate as described in Section
3.2f. The classic example appears to be that of tung-
sten wire. Pure tungsten (and most other bec metals)
readily forms a bamboo structure, consisting of nearly
planar boundaries. A dispersion of bubbles introduced
by ‘‘doping’’ (which alone cannot hinder the sliding
process) or of thoria, results in elongated, interlocked,
and extremely wavy grains, with a great resistance to
sliding deformation.

5) SUMMARY

1) Grain boundaries are seldom perfectly planar.
When a shear stress causes sliding to occur at a
grain boundary, some accommodation process is nec-
essary where the boundary deviates from a perfect
plane. This process almost always determines the
extent and rate of sliding.

2) The accommodation may be purely elastic; or it
may be diffusional; or it may involve plastic flow by
dislocation motion. This paper considers in detail the
elastic and diffusional accommodation required when a
boundary of arbitrary shape slides.

3) When accommodation is purely elastic, internal
stresses grow as sliding proceeds, until the appropri-
ate component of them exactly balances the applied
stress, when sliding stops. The paper contains equa-
tions which give the total amount of sliding at a bound~
ary of arbitrary shape, and the internal stress-field
developed by the sliding, Section 2.1.

4) These equations are applied, in Section 2.2 to
a) a boundary of sinusoidal shape, b) a saw-tooth and
a stepped boundary, and c) a polycrystal; it is shown
that the total amount of sliding is usually very small,
but it leads to an apparently lower shear modulus
(Zener relaxation). Its rate is related to the intrinsic
viscosity of the boundary plane, but since its magnitude
is small, most measurements of sliding rate do not
measure this intrinsic viscosity (internal friction is an
exception).
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5) When accommodation is by diffusive flow of matier
from one part of the boundary to another, a different
internal stress field is set up. The paper contains
equations for the rate of sliding, and the stress field,
at a boundary of arbitrary shape when accommodation
is diffusional. Both bulk and boundary diffusion are
considered, Sections 3.1 and 4.1.

6) These equations are applied to:

a) A boundary of sinusoidal shape.

b} A stepped boundary, with periodic, symmetrical
steps; the results are compared with a more limited
calculation due to Gifkins and Snowdon, which we con-
sider to be incorrect.

¢) A more general, unsymmetrical stepped boundary.

d) The creep of a polycrystal by grain boundary
sliding with diffusional accommodation; this is true dif-
fusional creep. The results are compared with, and
agree well with, those of Herring, Coble, Lifshitz,
Gibbs, and Green.

e) The effect of grain shape on diffusional creep:
elongated grains can greatly retard it.

f) The effect of grain boundary migration on diffu-
sional creep: in a polycrystal the effect is generally
small unless grain growth occurs; in a bicrystal the
effect can be large, and lead to an irregular sliding
rate.

g) The rate of sliding at a planar grain boundary
containing precipitate particles or inclusions; the re-
sult is compared with, and supports the form of, a
more limited result due to Gibbs.

h) The influence of precipitates or inclusions on the
diffusional creep of a polycrystal; the effect is usually
small, though microscopic processes and the effect of
particles on grain shape may influence it, Sections
3.2 and 4.2.
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APPENDIX 1
SLIDING WITH ELASTIC ACCOMMODATION
The Two-Dimensional Problem

If the shape of any grain boundary has a two-fold axis
of symmetry and has bounded first derivatives, it may
be described by a cosine Fourier series:

x= 7, hncos%ny (A1]
1

The thickness of the bicrystal in a direction normal to

the boundary plane is considered to be large compared

to A, (the basic wavelength of the boundary shape) so

that conditions of plane strain apply. A shear stress

Tq is applied in the y direction as shown in Fig. 2.1,
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causing fhe upper half-crystal to slide over the lower
one in the boundary plane. The net relative displace-
ment of the two crystals, parallel to the y-axis, is U
which we imagine as a displacement of % U of the upper
half-crystal to the right, and an equal displacement of
the lower one to the left. For convenience we consider
only the lower crystal, i.e. the region —w = 3y = o,

+o0 = x = 0. As a result of the symmetry of the prob-
lem the displacements, stresses, and sliding in the
upper crystal are complementary. If each half-crystal
were rigid, then a sliding displacement U/2 of one
half-crystal would produce tangential displacements
U; and normal displacements U,, in the boundary sur-
face, where

ﬁt=gcos6=g
En-%smez%z—;‘ [A2]
:—ﬁ% Zl)nhn sm%ﬂny

The assumption here that ¢ is sufficiently small that
cos 6 = 1 and sin 6 = tan 6, can introduce errors of or-
der v2 only when the amplitude % of the boundary ex-
ceeds half the wavelength x. We normally consider
boundaries for which 2 « x.

Suppose now that some distribution of normal stress,
0p, acts across the boundary as shown in Fig. 2.1. Let
this be described by a Fourier series, which by sym-
metry must have the form

nd .2
on =7 2 o sin =L ny [A3]
1
where y has the dimensions of stress, and the a’s are
numerical coefficients to be determined. Mechanical
equilibrium in the boundary plane requires that

+HN2) d
x
Tak — f cn@dy=0 [A4]
N2
which leads to the following value for y:
v =— _;T_G_L__ [A5]

7 Zl}nanh,,

The procedure for evaluating o, is straightforward,
but messy. It involves calculating the displacement
field due to the normal stress distribution of Eq. [A3],
and equating the appropriate component to that caused
by sliding, as follows. We have assumed the boundary
to have a small amplitude-to-wavelength ratio. If we
now assume the boundary to be flat but apply to it the
same boundary conditions as we did to the wave-like
boundary, we introduce only second-order errors.
The vectors n and t now coincide with our ‘‘x’” and
““y”’ axes. We may now use a standard result of elas-
ticity theory (Timoshenko and Goodier'®), namely that,
under conditions of plane strain, a sinusoidal surface
stress g,(0; y) = & sin (27/A)y, 7,,(0,y) = 0 leads to
the following internal stress distribution:

Oy = o [1 + %gr—x] o~/ sin%\’[ y
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- _ 21 | —@rhyx g 28
oy—a[l X ]e(“) sin ==y

2
Tey =—a _Aﬂ x e—@r/ A

cos 2T 46!
Y
oy = vloy + 0y)

Applied to the general boundary shape, these become:

2
Oy =¥ ay, l:l + —2)\—77 nx} e—@m/Amx gin —}\-7[ ny

2
i
= 5 1 27 ~@2T/\mx gi 27
oy—-}/}l: ap |- Snxle sin == ny
A7)
2 [
Ty =7 ? ay, % nxe—(,‘mr/?&)nx cos Tﬂ ny

= +
0z = v[oy 03’] where —o=y=w
o= x =0

Applying the constitutive relations to Eqs. [A7] we
obtain the elastic strains:

€ = (1 + v) i Olnl: (1-2v) + %nx] e~ @/ nx

xsin—zk—ﬂny

(1+ry) & 27 /
=T Y —~92y)y - 24 —(2T/ A mx
€ 77 ? | (1 20) L nx|e

x sin 2%

sin == ny

-1 2

Exy = _LE‘.*,V) y 21 @ Tﬂnx e—@T/A)nx
27
XCOSTTL:V

where E is Young’s modulus and v is Poisson’s ratio.
The normal displacement of the boundary surface is
calculated from

€ :_1. M_g.%’
Xy 21 a9y dx

Differentiating with respect to y and rearranging terms
we obtain
Vux _ 06y &y
ay® ay ox
This yields:

(?2“_’? -4
39/ 0y E

Integration gives:
21— A & . 27
E T 217 n S

where x>0
> 4 sin 21ny
i

1, (0, y) = [A8]
Equating this elastic displacement to the normal dis-
placement of equation [A2}, and equating coefficients
(since the equation must hold for all y), we obtain:

oy = nohy
Substituting this into the equation for u, ,and the Eq.
[A3] for g, , leads immediately to the results [2] and

[3] of Section 2. The stress fields within the crystals
can be obtained via Eq. [AT].
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APPENDIX 2
SLIDING WITH DIFFUSIONAL ACCOMMODATION
The Two-Dimensional Problem

Consider steady-state sliding at a general boundary
with a shape described by the Fourier series, Eq. {1],
During steady-state sliding, vacancies are neither
created nor absorbed within the two crystals: the
boundary is the only source or sink. This means that
the divergence of the flux, div J, is zero within both
crystals, or, equivalently, that the Laplacian of the
chemical potential, u, be zero within each crystal:

ulx, y) =0 [B1]

The flux field for vacancies within the crystals is ob-
tained by solving this equation subject to boundary con-
ditions which ensure chemical equilibrium, mechanical
equilibrium, and continuity (or compatible deformation)
in the boundary.

Chemical equilibvium in the boundary plane means
that the chemical potential u of vacancies at, and im-
mediately adjacent to a point on the boundary is related
to the normal stress g, acting on the boundary at that
point:

§=po— 0, (at the boundary) (B2)

where Q2 is the atomic volume, and po the chemical po-
tential appropriate to a stress-free reference state.

As in Appendix 1, let the distribution of normal
stress, o, , acting across the boundary surface, be de-
scribed by the Fourier series [A3]. Then mechanical
equilibvium leads, as before, to the relationship [A5].
Here, however, the parallelism with Appendix 1 ends:
the coefficients o, are determined here by solution of
the diffusion equation, and are quite different from
those obtained via Hookes law in Appendix 1.

Solution of Eq. [B1] subject to these boundary condi-
tions still leaves the coefficients @, as unknowns.
These are determined by the continuity condition,
which we now derive. Steady-state sliding requires
that the flux of atoms (or counter-flux of vacancies)
into each element of the boundary precisely account
for the change in volume of the element due to sliding.
The element E of Fig. 3.1 is shown in detail in Fig. B1.
It has width AS. In time element Af the sliding dis-
placement is UAZ and a volume ASUA! sin 8 of matter
must be pumped out of the element. From here on we
approximate the boundary as the plane (0, y) introducing

Jy loyy)

Fig. Bl—Details of the element E of Fig. 3.1. Vacancies en-
ter and leave the element via a boundary flux Jp, and a flux
through the crystal Jy.
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only errors of second order if # «< X, and errors of
order 2 when %z = ) /2. The continuity equation, which
can be understood by referring to Fig. B1 is then

UataS sin 6 = Qat{-2J%(0, y)aS
~[JB b + ay) — IZ ()6}

Here Jjf is the volume diffusion flux of vacancies:
since vacancies are generated or absorbed only at the
boundary, this flux at the boundary plane has an x-
component only. J? is the diffusional flux of vacancies
in the plane of the'grain boundary; it has a y-compo-
nent only. 6 is the thickness of the grain boundary and
measures the area across which the boundary flux
passes. The atomic volume is Q.

Applying our usual approximation that the slope of
the boundary, tan 6 = dx/dy ~ sin 6 and that AS/Ay
= cos § = 1, and allowing the incremental distances

Ay and so forth to become infinitesimal, gives for the
continuity equation:

(B3]

y
6 ddJ U dx
0N -5 T Ta 4y

The diffusional fluxes of vacancies are related to the
gradients of chemical potential by

[B4]

- D —_
Jv(x,y)=—§ﬁc%Vu(x,y)
B5)
DB d [
Y(y) = . B _ap
Jp0) =~ qur &y (0, »)

where D, is the self-diffusion coefficient for volume
diffusion, Dy is that for boundary diffusion,* and % is

*Strictly speaking, the correct diffusion coefficients Dy/f,, and Dg/fg should be
employed; here Dy, and Dy are the tracer diffusion coefficients and f, and fy are
the correlation factors. A reader requiring an exact solution should make this re-
placement. For simplicity in this paper the correlation factors are assumed to be
close to unity, and are omitted.

Boltzmann’s constant and 7 the absolute temperature.
We may now reformulate the problem as follows.
We require a solution to the equation

vzu(x: y) =0
Subject to the boundary conditions

oo . 2
0, y) = po—Qy X3 a, sin Tﬂny

! [B6)
ploo, ) = po

The appropriate solution has the form

e, y) = 27 A, exp— (%M)sin 2—7;\22 +C

1

Applying the boundary conditions, which hold for all Y,
leads to

C = o

Ap = —Qyay,
Substituting in Eqs. [B5] gives the fluxes

D < 27
x - v Z) _Zaan
50, y) T QrT Y ] A

dJg Dg o
0 = ———— —
o OV D (

. 2wy
Qy SN ———

2 \° . 2Tn
B oznsm—27t
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Substituting these into the continuity equation [B4]
yields

RS LU ).2_71
AT Zl}an(an+ . "Dp) sin == ny

U3 27
= zﬂzl)nhnsm)\ny

This equation must also hold for all values of y, so that

o = g [B7]
Dy + — nDp
A
and
T-_2r2 1
U S (B8]

Here K is an arbitrary constant. By substituting for y
in Eq. [B8)and eliminating K and oy, Eq. [B7] yields a
final expression for the sliding rate, U, presented in
the text Eq. [9]. A similar substitution into Eq. [A3]
yields the distribution of normal stress, presented as
Eq. [10]. The entire stress field within each crystal,

if it is desired, can be obtained by inserting the expres-
sions for y and a,, into Egs. [A7)].

APPENDIX 3
SLIDING WITH DIFFUSIONAL ACCOMMODATION
The Three-Dimensional Problem
A) THE ELECTROSTATIC ANALOG

Consider a boundary containing well-separated cubic
particles; one is shown in Fig. 4.1(a). We first solve
the analogous electrostatic problem, Fig. 4.1(b), re-
placing the stressed body by a body having a finite
specific conductivity, and containing sources and sinks
for charge. These sources and sinks we imagine as
electrodes held at a potential difference A V. Then the
current [ flowing between the electrodes is:

I=KAV [C1]

where K is the conductivity of the body as seen by the
electrodes. Each electrode forms an equipotential, and
the current flow is normal to its surface. We approxi-
mate the diffusion field by the analogous electrostatic
field due to four point charges of strength x¢, placed
at coordinates [+(a/4), +(a/2), 0] which form the cen-
ters of the faces of the upper and lower halves of the
particle. From Gauss’ Law these charges may be re-
placed by four nearly spherical equipotential surfaces
E*, containing the charges +q. We will assume that the
centers of these surfaces lie on the surface of the par-
ticle, and that they pass through the points [+(a/2),
+(a/2), 0] as shown in the figure. (We have tried other
geometries, and find that the final result is insensitive
to assumptions concerning the form of the equipoten-
tials.)

The conductance K of the body can be calculated
from the equivalent electrostatic problem (Reitz and
Milford") and is:

_ k1@l
el AV |

where k is the specific conductance, € is the dielectric

[c2]
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constant and | Q | the total charge; thus {1 Q1 =2Zlql.
! AV | is the potential difference between the elec-
trodes. This we obtain from the potential function
Vix, v, 2), which is the algebraic sum of the potentials
due to each of the four point changes thus:

Vix,y,2)= (i + Vo + Va + Va)

where Vi and so forth are the potentials due to charges
number 1, 2, 3, and 4 as shown on Fig. 4.1(b):

1
Vl:"g 73

R

and so on. The required potential difference between
two of the equipotential surfaces is 1AV = |EY —E™|
where

lEY = |ET| = lV(:tgz-,:t%,O) |

{ AV | is easily evaluated as

Substituting this into Eq. [C2], and noting that | Q|
= 49 we have

K, = 0.83ak,

where K, is the bulk, or volume conductivity of the
body containing the electrodes, and «,, is the specific
volume conductivity.

Transport by grain boundary diffusion implies
specific boundary conductance kg which differs from
that of the volume. For this case the standard relation
between conductance and specific conductance can be
used, giving

KB = 25!(3

where § is the thickness of the high conductivity layer,
that is, the boundary thickness. Thus the net conduc-
tivity of the body is

K = 0.8ak, + 28kp [C3}

In many diffusion problems the particle is composed
of a chemically different material through which no
diffusive flux passes, i.e. the particle is impermeable.
This lowers the volume conductivity by a factor which
we will assume to be 0.5, giving for the net conduc-
tivity (0.4ax,, + 28kp).

Finally, many real systems contain particles which
are coherent with one grain, but incoherent with the
other. Presumably the coherent surfaces cannot act
as sinks and sources. The electrostatic analog be-
comes a pair of point charges, 1 and 4 in Fig. 4.1(p),
instead of four. The resulting conductance, for a per-
meable particle becomes (0.3ak, + dkg) and for an im-
permeable one (0.15ak, + Skp).

B) APPLICATION TO THE DIFFUSION PROBLEM
Comparing the equation for the electric flux
J =—KkIV

with that for diffusive flux

7-__D 3
I =~ qrr VH
where VV and Gpd are respectively the gradients of
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electric and chemical potential, we find

_ D‘U
“o = QT
Dp
“B = QT

where D, and Dg are the volume and boundary diffu-
sivities. Inserting these expressions into Eq. [C3]
gives the ‘‘diffusive conductance’’ Kpjs of the body.
The total flow of vacancies round the particle is re-
lated to the difference in potential Ap between the two
sides of fhe particle by

1= Kpjap [C4]
(I is a number of vacancies flowing round the particle
per sec).

Suppose the sliding rate at the boundary is U. Then
conservation of matter requires that

Ud®
I= 5a [C5]
We relate the chemical potential difference Au to the
applied stress 7, by an energy argument. We require
that during an increment of sliding Ud¢, the external
work T,U0t is equal to the energy dissipated within the
body. This is I6tAuN, where N is the number of par-
ticles of size a per unit area of boundary. This leads
fo

Ta_l} = INApN [C6]
Solving these equations for U gives

- 49Q%KpiT

h= - ote [c7)

Na*
Inserting appropriate values for the diffusional con-
ductance K py from Egs. [C3], and replacing N by 1/A°
where A is the particle spacing, we obtain

= Tald )? 6 Dp
= . —_—— 1 2. — =
U=3.2 T D, + 2.5 2D, (c8a]l
for a permeable particle, incoherent in both grains;
- Taf2 A2 5 DB
= . —_— 1 el 8
5= 1672 ast{ 522 [C8b]

for an impermeable particle (i.e. one through which
no diffusion can occur) incoherent in both grains; and
SO on.
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