
On Grain Boundary Sliding and Diffusional Creep 
R. RAJ AND M. F. ASHBY 

The problem of sliding at a nonplanar grain boundary is considered in detail. The stress 
field, and sliding displacement and velocity can be calculated at a boundary with a shape 
which is periodic in the sliding direction (a wavy or stepped grain boundary): a) when de- 
formation within the crystals which meet at the boundary is purely elastic, b) when diffu- 
sional flow of matter from point to point on the boundary is permitted. The results give 
solutions to the following problems. 1) How much sliding occurs in a polycrystal when 
neither diffusive flow nor dislocation motion is possible? 2) What is the sliding rate at a 
wavy or stepped grain boundary when diffusional flow of matter occurs? 3) What is the 
rate of diffusional creep in a polycrystal in which grain boundaries slide? 4) How is this 
creep rate affected by grain shape, and grain boundary migration? 5) How does an array 
of discrete particles influence the sliding rate at a grain boundary and the diffusional 
creep rate of a polycrystal? The results are compared with published solutions to some 
of these problems. 

1. INTRODUCTION 

Our  e x p e r i m e n t s  1 have convinced us that the r a t e  at 
which s l iding o c c u r s  at a s t r e s s e d  g ra in  boundary  is 
f requen t ly  d e t e r m i n e d  by the boundary shape.  B r i e f l y ,  
the cogent  obse rva t ions*  of the s l iding at g ra in  bound- 

*Some of which have been reported also by other investigations; see the re- 
views of R. N. Stephens (Met. Revs. 1966, vol. 11, p. 129) and R. L. Bell and 
T. G. Langdon: Interfaces, Butterworths, 1969. 

a r i e s  in copper  and s i l v e r  a r e :  
a) that  a number  of s p e c i m e n s  cut f r o m  the s a m e  b i -  

c r y s t a l  show quite d i f fe ren t  s t e a d y - s t a t e  s l id ing r a t e s ,  
b) that the s l iding r a t e  changes  when the boundary  

a l t e r s  i ts  shape by mig ra t i ng ,  
c) that the p rec ip i t a t ion  of hard p a r t i c l e s  into a 

boundary s lows down the s t e a d y - s t a t e  s l id ing r a t e ,  and 
d) that the ac t iva t ion  ene rgy  for g ra in  boundary  s l id -  

ing is s o m e t i m e s  (but not a lways)  equal  to that  for  bulk 
diffusion.  

Although m o r e  exotic  explanat ions  a r e  pos s ib l e ,  we 
have been able  to expla in ,  quan t i t a t ive ly ,  a l m o s t  a l l  our  
obse rva t ions  by supposing that the s l iding r a t e  is con-  
t ro l l ed  by the accommoda t i ng  p r o c e s s e s  w h e r e  it dev i -  
a tes  f r o m  a pe r f ec t  plane,  not by any i n t r i n s i c  p rope r ty  
of the boundary i t se l f .  

To g r a s p  the phys ica l  meaning of the ca l cu la t ions  
contained in this  paper ,  it may be helpful  to v i s u a l i z e  
two c r y s t a l s  which m e e t  at smooth ,  but nonplanar  s u r -  
faces  which mate  exact ly  with each o the r .  Be tween  the 
mat ing s u r f a c e s  is an e x t r e m e l y  thin l aye r  of v i s cous - -  
though not necessarily Newtonian viscous--oil, modeling 
the intrinsic mechanical properties of the grain bound- 
ary. This layer transmits all normal stresses, but al- 
lows shear stress to relax with some characteristic 
relaxation time. The layer rarely controls the rate of 
sliding, though it is possible to devise experiments 
when it should (Section 2). Sliding generates incompat- 
ibilities w h e r e  the boundary dev ia t e s  f r o m  a pe r f ec t  
plane;  a l m o s t  a lways  it is the a c c o m m o d a t i o n  of these  

R. RAJ, formerly Graduate Student at Harvard University, Cam- 
bridge, Mass., is now Research Scientist, Chase Brass and Copper Co., 
Cleveland, Ohio. M. F. ASHBY is Professor, Division of Engineering 
and Applied Physics, Harvard University. 

Manuscript submitted October 8, 1970. 

incompatibilities which controls the extent and rate of 
sliding. 

The accommodation may be purely elastic: as sliding 
proceeds, elastic stresses build up at asperities on the 
boundary, or at places where the boundary has curva- 
ture, steps, or meets other boundaries at triple lines. 
The stresses ultimately grow until the appropriate com- 
ponent of them balances the applied stress, when slid- 
ing stops. At high temperatures, a second accommo- 
dating process is possible. The stresses developed at 
a nonplanar boundary by sliding can set up a diffusive 
flux of matter from compressed parts of the boundary 
to those in tension. A steady-state, diffusion-controlled, 
sliding then occurs. There is a third alternative. If the 
stresses in crystals which the boundary separates be- 
come sufficiently large, plastic flow involving disloca- 
tion motion can accommodate the incompatibility due to 
sliding. 

This paper describes solutions for the stress field, 
diffusive fluxes, and rates of sliding or (where appro- 
priate) strain-rates resulting from sliding at nonplanar 
grain boundaries. The two-dimensional problem is 
solved for a boundary of arbitrary shape, described by 
a Fourier series, subjected to a shear stress. Later, 
a number of specific and simple applications are de- 
scribed; these can be understood without understanding 
the solution of the general problem. We attempt to 
a n s w e r  ques t i ons  such as :  How fas t  does  a s e r r a t e d  
boundary s l i d e ?  How much s l id ing o c c u r s  when the a c -  
commoda t ion  is e l a s t i c ?  What is the s t r a i n - r a t e  in a 
p o l y c r y s t a i  which d e f o r m s  by s l id ing with di f fus ional  
a c c o m m o d a t i o n ?  How does  g ra in  shape affect  th is  
r a t e ?  How do g r a i n  boundary  p r e c i p i t a t e s  change the 
r a t e  of g r a i n - b o u n d a r y  s l id ing?  How does  g r a in - bound -  
a r y  m i g r a t i o n  inf luence  s l id ing?  Our  r e s u l t s  a r e  c o m -  
pared  with so lu t ions  to s o m e  of t he se  p r o b l e m s  p r e -  
sented by o the r  au tho r s .  

The  pape r  e x p l o r e s ,  in de t a i l ,  a s p e c t s  of g r a i n -  
boundary s l id ing which can be t r e a t ed  by continuum 
t h e o r i e s  of e l a s t i c i t y  and d i f fus ive  flow. M i c r o s c o p i c  
o r  a t o m i s t i c  a spec t s  of the s l id ing  p r o c e s s  which can-  
not be i nco rpo ra t ed  into cont inuum t h e o r i e s ,  and which 
a r e  s t i l l  i m p e r f e c t l y  unders tood ,  can s o m e t i m e s  be 
impor tan t .  A d i s c u s s i o n  of s o m e  of the r e l e v a n t  m i c r o -  
scopic  p r o c e s s e s  is given by G l e i t e r  etal.2 and Ashby.  3 
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2.1) SLIDING WITH ELASTIC ACCOMMODATION 

The T w o - D i m e n s i o n a l  Ca lcu la t ion  

Imagine  a shea r  s t r e s s ,  "Ca, to be appl ied to a non- 
p lanar  boundary like one of those  shown in Fig .  2.1. 
The shape of these  bounda r i e s ,  o r  of any boundary  
which has a two-fo ld  axis  of s y m m e t r y  and bounded 
f i r s t  d e r i v a t i v e s ,  can be d e s c r i b e d  by a cos ine  F o u r i e r  
s e r i e s  

2~ 
x = ~C h,~ cos  S -  ny [1] 

! 

If the e l a s t i c  cons tan ts  of the two c r y s t a l s  which 
m e e t  at the boundary w e r e  i n f i n i t e ,  the s h e a r  s t r e s s  
would cause  no s l iding.  F in i t e  e l a s t i c  cons tan t s ,  on 

the o the r  hand, p e r m i t  some  s l iding s ince  r e l a t i v e  
n o r m a l  d i s p l a c e m e n t s  of the two c r y s t a l s  at the bound- 
a ry  can be accom m oda t ed  by local  e l a s t i c  de format ion  
of the c r y s t a l s  t h e m s e l v e s .  This  leads  (via Hookes 
law) to s t r e s s e s  which tend to oppose fu r the r  s l iding,  
and which,  growing as  s l iding cont inues ,  u l t ima te ly  
ba lance  the appl ied s t r e s s  and stop the s l iding.  When 
this  equ i l ib r ium s ta te  is r eached ,  only n o r m a l  
s t r e s s e s  ~n, Fig .  2.1, ac t  a c r o s s  the boundary plane: 
the abi l i ty  of the boundary to s l ide  has r e l axed  the 
s h e a r  component  of s t r e s s .  

Appendix I conta ins  a ca lcu la t ion  which d e s c r i b e s  
the extent  of this  kind of s l iding,  and the in te rna l  
s t r e s s - f i e l d  gene ra t ed  by it.  The to ta l  r e l a t i v e  d i s -  
p l acem en t ,  U, in the y d i r ec t ion ,  of the two c r y s t a l s  
be fo re  the in t e rna l  s t r e s s  ba lances  the applied s t r e s s ,  
and sl iding s tops ,  is 

n 
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Fig. 2.1--Four examples of nonplanar 
boundaries. A shear-s t ress  Va, causing a 
relative sliding displacement U, generates 
a distribution of normal stress a n acting 
across the boundary surface. 
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= ( 1 - v  2) ~.s ~ [2] 

n h  n 
1 

This  s l iding is recoverable; when the s t r e s s  is r e -  
moved the boundary  wi l l  s l ide back.  The n o r m a l  
s t r e s s  act ing on the boundary  plane is given by 

2~r 
tax ~1 n2hn sin T ny 

. [3] 
oo n3h~ ~ = -  7T 

1 
Here  u is Po i s sons  ra t io ,  E Young 's  modulus ,  X the 
bas ic  wavelength of the boundary  shape,  Fig.  2.1, 
T a the applied s t r e s s ,  and h n the F o u r i e r  coeff ic ients  
of the boundary  shape.  If d e s i r e d ,  the en t i re  s t r e s s  
field in both c r y s t a l s  (not just  in the boundary  plane) 
can be obtained by the method of Appendix I. 

(Before equ i l ib r ium is reached ,  s l id ing proceeds  
with a velocity which re f lec t s  the i n t r i n s i c  p r o p e r t i e s  
of the boundary  i tse l f :  the v i s cos i t y  of the " o i l  f i l m "  
r e f e r r e d  to e a r l i e r .  Damping expe r imen t s  which m e a s -  
u re  the re laxa t ion  t ime ,  or  some re la ted  p rope r ty ,  
when the accommodat ion  is purely elastic seem to be 
the only way to m e a s u r e  the i n t r i n s i c  mechan i ca l  p rop-  
e r t i e s  of the boundary) .  

2.2) EXAMPLES AND DISCUSSION BASED ON 
THE RESULTS OF SECTION 2.1 

The results given as Eqs. [2] and [3], though com- 
plicated, have considerable generality. They give the 
elas t ic  s l id ing d i sp l acemen t ,  and the s t r e s s  d i s t r i b u -  
t ion,  at any boundary  with a s y m m e t r i c a l  shape.  They 
a r e  accura te  if the ampl i tude  h /2  of the boundary  wavi -  
n e s s  is s m a l l  compared  to i ts  wavelength ~ and r e m a i n  
a reasonab le  approx imat ion  even when h is as  l a rge  as  
A,/2. 

a) The Sinusoidal  Boundary  

A s ine  wave is often a good approx imat ion  for  the 
shape of a wavy boundary .  It is de sc r i be d  by the f i r s t  
t e r m  of a F o u r i e r  s e r i e s ;  thus the boundary  of Fig.  
2.1(d) is de sc r ibed  by 

h 2n  
x = ~ cos ~-- y 

so that ht = h/2 and a l l  o ther  h n a r e  ze ro .  An applied 
she a r  s t r e s s  r a wil l  then cause  a total  s l id ing d i sp l ace -  
men t  given by Eq. [2] a s  

~ _  4 ( 1 - v  2) ~.3 Z~_ [4] 
7P h 2 E 

where  E is Young ' s  modulus  for  the c r y s t a l .  This  
amoun t  of s l id ing ge ne r a t e s  a local  s t r e s s  a n act ing 
a c r o s s ,  and n o r m a l  to,  the boundary  plane.  This  n o r -  
ma l  s t r e s s  is g iven by Eq. [3]; it v a r i e s  s inuso ida l ly  
with pos i t ion  in the following way: 

2 "ra~ s in  2~ 
~n - ~ h T y [5] 

b) The In t e rna l  S t r e s s e s  Genera ted  by Sliding 

Sliding with e las t ic  accommoda t ion  gene ra t e s  a d i s -  
t r ibu t ion  of n o r m a l  s t r e s s  ac t ing  a c r o s s  the boundary  
su r face  and given by Eq. [3]. The s t r e s s  has sha rp  
peaks where  the slope of the boundary  changes abrup t ly .  
Two examples  a r e  shown in Fig .  2.2: that of a saw-tooth  
boundary  and stepped boundary .  Below the boundary  
shapes  is shown the n o r m a l  s t r e s s  ~n ac t ing  on the 
boundary  plane.  When accommoda t ion  is e l a s t i c ,  the 
s t r e s s  a n r i s e s  sharp ly  at the c o r n e r s  of the saw-tooth  
shape,  and at the s t eps ,  where  they reach  va lues  of 
many t i me s  g r e a t e r  than the applied s t r e s s  T a. 

The lowest c u r v e s  of the f igure  show how the s t r e s s  
is r e d i s t r i b u t e d  when diffusiona[  accommoda t ion  (dis-  

4 
Fig. 2.2--Sliding at the saw-toothed, and o; 2 
at the stepped boundary shown above n 
generates a distribution of normal stress ~ O 
Crn acting across the boundary plane. The -2 
distribution when accommodation is _~ 
elastic differs totally from that when ac- 
commodation is by diffusion. 
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Fig. 2.3--A shear stress applied to a polyerystal causes 
sliding along nonplanar surfaces like that shown above. If the 
array of grains is idealized by a hexagonal array, two ortho- 
gonal sets of sliding surfaces (Modes 1 and 2) exist as shown 
below. 

cussed  in Section 3) is al lowed: the r ed i s t r i bu t i on  to-  
ta l ly  changes  the s t r e s s  d i s t r ibu t ion .  It is not gene ra l ly  
r ea l i zed  that s tandard  e las t ic  so lu t ions ,  such as  those 
for an e las t ic  c rack ,  a r e  not appl icable  to p rob lems  of 
g ra in  boundary  s l id ing at  high t e m p e r a t u r e s  (when dif-  
fusion is poss ible)  because  of this  r ed i s t r i bu t ion  of 
stress. 

More exact ly,  the two or thogonal  paths labeled "Mode 
1" and "Mode 2"  on the f igure  can be desc r ibed  by 
F o u r i e r  s e r i e s ,  and the s l iding d i sp lacement  evaluated 
for each one p roper ly  by applying Eq. [2]. The resu l t  
has p rec i se ly  the same form as  Eq. [6], with the con-  
s tant  0.87 replaced  by 0.34 for Mode 1 and 0.8 for Mode 
2. Tak ing ' typ ica l  va lues  for  the gra in  s ize  d = 10 -z cm 
and "tale = 10 -4, we obtain for the total  s l iding d is -  
p lacement  

The point he re  is that a boundary  in a po lycrys ta l  
can sl ide only an e x t r e m e l y  smal l  dis tance before  in-  
t e rna l  s t r e s s e s  develop which oppose fu r the r  s l iding.  
The in t r in s i c  v i scos i ty  of the boundary  i t se l f  (the prop-  
e r ty  of the "o i l  f i lm" )  wit1 only inf luence the rate  of 
s l iding when the s l iding d i sp l acemen t s  a re  less  than 
this .  This  v i scos i ty  may be detected in damping exper -  
iments  like those of K% 5 when the s l iding d i sp lacements  
a r e  of o rde r  10 -6 cm,  but wi l l  ve ry  r a r e l y  be m e a s u r -  
able by n o r m a l  macroscop ic  expe r imen t s .  Ins tead,  the 
ra te  at which macroscop ic  s l iding occurs  wil l  be l im-  
ited by the ra t e  at which one of two accommodat ion  
processes--diffusion or dislocation motion--can occur. 

Both the sliding modes shown in Fig. 2.3 contribute 
to the anelastic strain in the specimen. Since they are 
orthogonal, the net strain is the sum of the sliding dis- 
placements of the two modes, divided by the grain 
s ize ,  d :  

yANEL = 1.14(i -- v 2) ra = 0.57(i - u) ~ [7] 
E 

where ~ is the unrelaxed shear modulus. It is inde- 
pendent of grain size. This anelastic strain results in 
an apparently lower shear modulus ~R, given by 

~a= 1 
p. [0 .57(1 - . )  + 1] [8 ]  

1 If P o i s s o n ' s  rat io is taken as  ~-, the rat io of i~R/~ is 
0.72. 

The only comparab le  ca lcu la t ion  is that of Zener  
and K%. 4'~ They cons idered  s l iding with e las t ic  accom-  
modation for sphe r i ca l  g r a in s  (which, unl ike our  hex- 
agonal  p r i s m s ,  don' t  pack to f i l l  space).  The i r  r esu l t  

~t R _ 2(7 + 5v) (Zener ,  K%) 
/~ 5(7 - 4v) 

1 r educes  to 0.62 when P o i s s o n ' s  ra t io  is set  equal to ~-. 
It is not c l e a r  at p resen t  whether  the d i f fe rence  be-  
tween the two r e s u l t s  r e f l ec t s  the d i f fe rence  in gra in  
shape,  or  is caused by the approximat ion  inherent  in 
our  t r e a tmen t .  

c) Deformat ion  of a Po lyc rys t a l :  C o m p a r i s o n  
with the Resul t s  of Zene r  4 and K~ ~ 

Cons ide r  the s l iding which occur s  when a shear  
s t r e s s  z a is applied to a po lyc rys ta l  of g r a in  s ize  d ,  
l ike that  shown in Fig.  2.3. As a f i r s t  approx imat ion ,  
(though it is a poor one) the path shown on the f igure  
can be approximated  by a s ine wave of wavelength ~d  
and height (h) of d / 2 .  Then Eq. [4] shows that the net  
s l iding d i sp lacemen t  U, in a d i r ec t ion  pa ra l l e l  to the 
s t r e s s ,  is given by 

= 0.87(1 - v2)d ~ [6] 
E 

3.1) SLIDING WITH DIFFUSIONAL 
AC C OMMODATION 

The Two-Dimens iona l  P rob lem 

Steady-s ta te  s l iding is poss ib le  if a diffusive flux of 
a toms ,  or  vacanc ie s ,  accommoda tes  the re la t ive  d i s -  
p lacements  of the two c r y s t a l s .  

A s imple  example  is shown in Fig.  3.1. A sl iding 
ra te  U in the y d i rec t ion  t r a n s l a t e s  the upper  half 
c rys t a l  f rom the posi t ion shown by the full l ine to that 
shown by the b roken  l ine ,  in t ime  At. A s l id ing d i s -  
p lacement  PAt  can be r e so lved ,  local ly ,  into compo-  
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= y  Fig. 3.1--Steady-state sliding with diffu- 
sional accommodation. 

nents  p a r a l l e l  and n o r m a l  to the  bounda ry .  S t e a d y - s t a t e  
s l id ing  then r e q u i r e s  that  the ne t  f l u x  o f  a toms  into or  
out o f  each e l e m e n t  o f  the boundary p r e c i s e l y  account  
f o r  the norma l  component  o f  the s l id ing  d i s p l a c e m e n t  
there .  This  flux of a t o m s  (or  coun te r f lux  of v a c a n c i e s )  
is  s u p p l i e d  by vo lume di f fus ion th rough  the two c r y s -  
t a l s  and by d i f fus ion  in the p lane  of the  g r a i n  bounda ry  
i t se l f .  The  n o r m a l  s t r e s s  an ac t ing  on the bounda ry  
p lane  is now d e t e r m i n e d  by the r e q u i r e m e n t  of con t i -  
nui ty:  i t  is  that s t r e s s  d i s t r ibu t ion  which wi l l  d r i ve  
d i f fus ive  f l ow  at  a ra te  that exac t l y  c o m p e n s a t e s  f o r  
the normal  component  o f  d i s p l a c e m e n t  a t  each point  on 
the boundary.  In g e n e r a l ,  th is  d i s t r i b u t i o n  of n o r m a l  
s t r e s s  is  qui te  d i f fe ren t  f rom that  ob ta ined  in Sect ion  
2, when no d i f fus ion  was  p e r m i t t e d .  

Appendix  2 con ta ins  a ca l cu l a t i on  which d e s c r i b e s  
th i s  kind of s l i d ing ,  a l lowing t r a n s p o r t  by both vo lume  
and by g r a i n - b o u n d a r y  d i f fus ion.  F o r  the g e n e r a l  
boundary  d e s c r i b e d  by Eq. [1], the  i m p o r t a n t  r e s u l t s  
a r e  a s  fo l lows.  The s t e a d y - s t a t e ,  d i f f u s i o n - c o n t r o l l e d  
s l id ing  r a t e ,  ~ ,  is given by 

-~_  2 Ta~ )~ Dv 1 
--h 2 ~ ( h~ /h 2 ~ [9] kT ?T 

~ 1 -- -~ -D  B 
1 -~ X D v 

+ - - - - ]  

w h e r e  h is  the  t o t a l  height  of the  bounda ry  shape ,  a s  
shown in F i g s .  2.1 and 3.1. The n o r m a l  s t r e s s  in the  
bounda ry  p lane ,  an(0 , y) is given by 

1 + nYO DB~ sln  T n 

~n(O, y) = -- ~a~ ~ D v /  [10] 
n ~ / h  ~ 5 (1+ 

1 ~ D v ] )  

H e r e  T a is  the  app l i ed  s h e a r  s t r e s s ,  ~ the a t o m i c  vo l -  
u m e ,  D v the  bulk s e l f -d i f fu s ion  coe f f i c i en t ,  DB that  for  
bounda ry  d i f fus ion ,  5 the  t h i c k n e s s  of the  g r a i n - b o u n d -  
a r y  diffusion pa th ,  k the b a s i c  p e r i o d i c i t y  of the bound-  
a r y ,  and hn the F o u r i e r  coe f f i c i en t s  d e s c r i b i n g  the 
boundary  shape .  The en t i r e  s t r e s s  f ie ld  wi th in  each  
c r y s t a l  if d e s i r e d ,  can be ob ta ined  by  the method of 
Appendix  2. 

3.2) EXAMPLES AND DISCUSSION BASED ON 
THE RESULTS OF SECTION 3.1 

The two r e s u l t s  given as  Eqs .  [9] and [10], though 
c o m p l i c a t e d ,  have g r e a t  g e n e r a l i t y .  They al low the 
d i f f u s i o n - a c c o m m o d a t e d  s l id ing  r a t e ,  and s t r a i n  d i s -  
t r i bu t i on ,  a t  a bounda ry  of any a r b i t r a r y  shape  to be 
c a l c u l a t e d .  They b e c o m e  i n c r e a s i n g l y  exac t  a s  the  
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r a t i o  of the  a m p l i t u d e  h /2  of the  bounda ry  to i t s  w a v e -  
length ~ d e c r e a s e s .  If h is about  ) t /2 ,  the  e r r o r  is  of 
the  o r d e r  4-27. Th is  l e v e l  of a c c u r a c y  is a l m o s t  a lways  
adequa te  s ince  d i f fus ion  c oe f f i c i e n t s ,  p a r t i c u l a r l y  
those  for  bounda ry  d i f fus ion ,  a r e  l e s s  a c c u r a t e l y  known 
than th i s .  

a) The S inuso ida l  Bounda ry  of Wavelength  )t 
and Ampl i t ude  h/2  

The s i nuso ida l  bounda ry  is a usefu l  a p p r o x i m a t i o n  
for  any bounda ry  with an  obvious  p e r i o d i c i t y  and a m -  
p l i tude .  I ts  shape ,  i l l u s t r a t e d  by F ig .  2.1(d), is d e -  
s c r i b e d  by  

h 2~ 
X = ~ COS -~- y 

The s l id ing  e x p r e s s i o n ,  Eq. [9], then r e d u c e s  to 

= ~ kT D v 1 + ~ - ~  [11] 

Le t  the d i m e n s i o n l e s s  quant i ty  (~6 /~t)/(DB/D v) = M .  
Then if M is l a r g e  c o m p a r e d  to uni ty ,  t r a n s p o r t  is 
ma in ly  by b o u n d a r y  d i f fus ion ,  and the s l id ing  ra te  b e -  
c o m e s  independent  o f  X, and dependent  on ampl i tude  as 
1/h  e. When M is s m a l l  c o m p a r e d  to uni ty ,  vo lume  d i f -  
fus ion  is dominan t ,  and the s l id ing  r a t e  v a r i e s  as  k / h  2. 
In g e n e r a l  a sho r t  wave length  and a low t e m p e r a t u r e  
f avor  t r a n s p o r t  by bounda ry  d i f fus ion;  a long w a v e -  
length and high t e m p e r a t u r e  f avor  vo lume  dif fus ion.  
F ig .  3.2 shows the s l id ing  r a t e ,  in uni ts  of 
(8 /u ) (Ta~ /hT) (Dv /X) ,  plot ted  a g a i n s t  the " w a v i n e s s "  of 
b o u n d a r y ,  h/X,  for  v a r i o u s  va lues  of M.  It demon-  
s t r a t e s  tha t ,  for  a g iven M,  the  s l id ing  r a t e  d e c r e a s e s  
r a p i d l y  a s  the  bounda ry  b e c o m e s  i n c r e a s i n g l y  non- 
p l a n a r .  

The d i s t r i b u t i o n  of n o r m a l  s t r e s s ,  an, ac t ing  on the 
b o u n d a r y  dur ing  s t e a d y - s t a t e  s l i d ing ,  f rom Eq.  [10], is  

a n = - 2  ~ s in  2n [12] 
~h -~- y 

This  is  p r e c i s e l y  the  s a m e  s t r e s s  d i s t r i bu t i on  that  
would have f o r m e d  if no dif fus ion  had been  p e r m i t t e d ,  
Eq.  [5]. The s i n u s o i d a l  bounda ry  is  unique in th i s  r e -  
spec t ;  in a l l  o the r  c a s e s ,  of which e x a m p l e s  a r e  given 
be low,  the s t r e s s  d i s t r i b u t i o n  changes  when d i f fus ion  
O c c u r s .  

For  a quick e s t i m a t e  o f  the s l id ing  ra t e  and s t r e s s e s ,  
at  a boundary o f  s i m p l e  shape with an obvious bas ic  
wavelength  and ampl i tude  (like those  o f  Fig.  2.1) these  
e x p r e s s i o n s  are  adequate .  They m a y  d i f fe r  by a f ac to r  
of two f rom m o r e  exac t  so lu t ions .  T h e i r  u se fu lne s s  
and wide a p p l i c a b i l i t y  s t e m s  f rom the fac t  that  diffu-  
s iona l  r e d i s t r i b u t i o n  of m a t t e r  qu ick ly  r e m o v e s  the 
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h ighe r  t e r m s  in the  F o u r i e r  s e r i e s  d e s c r i b i n g  the 
s t r e s s e s  at  the bounda ry ,  leaving  only that  with the 
b a s i c  wave leng th ,  k,  a s s o c i a t e d  with  the  bounda ry  
shape .  (This  so r t  of s i m p l i f i c a t i o n  should not be a p -  
p l ied  when a c c o m m o d a t i o n  is  e l a s t i c ,  s ince  no m e c h a -  
n i s m  then e x i s t s  for  smooth ing  out the  s t r e s s  d i s t r i b u -  

t ion.)  When, however ,  the  b a s i c  wavelength  is  l e s s  
obvious ( e . g .  a boundary  conta in ing p a r t i c l e s  with s ize  
w and spac ing  X), e x p r e s s i o n s  [11] and [12] should not 
be  used .  Ins tead  a c o m p l e t e  so lu t ion  us ing Eq.  [9], o r  
one us ing r e s u l t s  given in Sect ion 3.2d, o r  Sect ion 4 
should be u sed .  

I I I I 

~1- I00 

N-IO 

M.I 

M-O 

1 I I I I L 
0.1 0.2 0.3 0.4 0.5 h/k 

Fig. 3.2~The steady-state  sliding rate at a boundary of sinu- 
soidal shape, as a function of amplitude. 

b) The In te rna l  S t r e s s  A s s o c i a t e d  with 
Dif fus ional  A c c o m m o d a t i o n  

The n o r m a l  s t r e s s  ~n ac t ing  a c r o s s  the boundary  
p lane  is g iven by Eq. [10]. A s  an e x a m p l e ,  th i s  s t r e s s  
has  been  eva lua ted  for  two boundary  s h a p e s :  the  saw 
tooth and the s tepped  bounda ry .  The r e s u l t s  a r e  shown 
at  the bot tom of F ig .  2.2. The n o r m a l  s t r e s s  d i f f e r s  
f rom that  f o r m e d  when a c c o m m o d a t i o n  is p u r e l y  e l a s t i c ,  
b e c a u s e  d i f fus ion  smooths  out ,  and r e d i s t r i b u t e s ,  the 
n o r m a l  s t r e s s  a s  d e s c r i b e d  above .  

c) The  P e r i o d i c  S t epped -Bounda ry :  C o m p a r i s o n  
with the  Resu l t s  of Gifkins  and Snowdon 6 

C o n s i d e r  the  r a t e  of s l id ing  of the r e g u l a r - s t e p p e d  
boundary  shown in Fig .  3.3(a): by " r e g u l a r "  we mean 
that  the  s t e p s  a r e  equal ly  spa c e d .  

If t r a n s p o r t  is  by g r a i n - b o u n d a r y  dif fus ion o n l y ,  
the b a s i c  r a t e  equat ion,  Eq. [9], r e d u c e s  to 

-~ = 2 "(.a ~2 5 D B [13] 

a(h) 
The s q u a r e - w a v e  boundary ,  shown in F ig .  3.3(a) is de -  
s c r i b e d  by the F o u r i e r  s e r i e s  

2 ~  
x =  ~ ~ cos  -s  

1 
with 

= _ _  nTl 2 sin 
h n~ -2- 

Subst i tu t ing in Eq.  [13] we obta in  

(a) 
O" n : : : : :~ : : : : : : : : : : : : :  .O n : : : : " : :  : : : : : : : : :  : : : : : : : : : : : ~  Y 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

X 

~ v o  

L., ~ :1 

Cb, iiiiiiiiiii ,i i, i    iii 
X 

= y  

F i g .  3.3--Above: a r e g u l a r l y  s t e p p e d  
b o u n d a r y ;  b e l o w :  a m o r e  g e n e r a l  s t e p p e d  
b o u n d a r y .  
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= 4 7af~ 6 
kT h --~ DB [14] 

Note that the s q u a r e - w a v e  shape s l ides  at exact ly  half 
the ra te  of a s inuso ida l  shape with the s a m e  b a s e - w a v e -  
length and ampl i tude ,  Eq. [11], and that ,  as  be fore ,  the 
s l iding ra te  is independent  o f  wavelength-- in  this  ease  
the step spacing--when t r a n s p o r t  is by boundary  diffu- 
s ion.  

Gifkins and Snowdon e give an approximate calculation 
for the sliding rate at a boundary of this shape, assum- 
ing boundary-diffusion only. Their result differs from 
ours by a factor t/h which can be large, and is incor- 
rect (Ashby etal .~).  

We can also evaluate  the s l id ing ra te  when volume 
diffusion is dominant  (Gifkins and Snowdon did not con-  
s ide r  this) .  This  resu l t*  when D v >> D B (n6 / t )  is given 

*Since steps do not have infinitely sharp corners, the Fourier series describing 
the stepped shape may be terminated after a finite number of terms. We have 
made a practice of evaluating the sums of Eqs. [9] and [10] for the first 50 terms 
of the series. 

by 

= 0.7 ~ae  X [15] 
kT  h 2 Dv 

The s inuso ida l  boundary ,  Eq. [11], is  a usefu l  s t andard  
for  comPar i son :  in this  case  the stepped boundary  
s l ides  at a ra te  which is s lower  by a fac tor  of 0.3 than 
does the s inuso ida l  boundary  of the s ame  height and 
wavelength.  

d) The Gene ra l  S tepped-Boundary ,  Allowing 
Both Boundary and Volume Diffusion 

We can now cons ide r  the gene ra l  case  of s l id ing at 
a boundary  containing r e c t a n g u l a r  s teps  in it ,  as a 
function of the height,  h, width w, and spacing  t of the 
s teps ,  Fig.  3.3(b). This  wave - shape  is de sc r ibed  by 
the F o u r i e r  s e r i e s  

x = h n cos ~ ny 
1 

w it h 

hn = _  s in  
h n~ k 

[161 

and the exp re s s ion  for  the s l id ing ra te  b e c o m e s :  

-~= 2 -ra~2 ~. D v 
-~ kT  h'Z ~ r ( 2  s in  n y w ~ Z T  [17] 

2J3 - - 

where ,  as  be fore ,  

M = ~_5 D_a 
)t D v 

Cons ide r  f i r s t  the case  of t r a n s p o r t  by bounda ry -  
diffusion only,  for which M >> 1. The s l id ing  ra te  then 
becomes  

kT h ~ DBF1 
where  [18] 

1 

1 

103 I I I I I 

GD DIFFUSION ONLY 
M>> I 

I0 ~ 

I0 

I 0 011 0]2 013 014 015 . . . . .  w/k 
Fig. 3.4---The summationFl(wA) for boundary diffusion. 

For  a given value of w / h ,  the funct ion F1 is a cons tan t ,  
and the s l id ing ra te  depends only on the height h of the 
s teps .  We have evaluated F1 as  a function of w / t ,  and 
plotted the r e s u l t  as Fig.  3.4 lit shows that na r row 
" b u m p s "  inhibi t  s l id ing far  l ess  than the wider  ones] .  
F o r  a given value  of w / h ,  the co r r e spond ing  value  of 
F1 can be read  f rom this  plot and plugged into Eq. [18]. 
For  the r e g u l a r - s t e p p e d  boundary ,  for i n s t ance ,  w i t  
= 0.5, and F~(w/M = 2, leading to the r e su l t  of Section 
c) Eq. [14]. 

In g e n e r a l ,  no r e g i m e  ex is t s  for  which t r a n s p o r t  is 
by vo lume diffusion only.  Mathemat i ca l ly ,  M can play 
an impor tan t  ro le  in the s u m m a t i o n  of Eq. [17] even 
when it (M) is sma l l .  Phys i ca l l y ,  the r ea son  for this  
is that even when t r a n s p o r t  over  the bas ic  wavelength  
~t is by vo lume diffusion,  t r a n s p o r t  round s m a l l  s teps  
may s t i l l  occur  main ly  by boundary di f fusion,  and i t  is 
this second  p r o c e s s  that is  rate-control l ing.  Our  Eq. 
[17] c o r r e c t l y  takes  account  of th is  effect,  but it makes  
the s imple  p r e sen t a t i on  of the r e s u l t s  predic ted  by the 
equat ion diff icul t .  For  this  ca se :  

~ =  2 rq~2 t _ __ DvF2 w_, n kT  h 2 ( x  M) 

F2/w,  "'\~-~1V1) - 1 [19] 

1 1 +  M 

Values  of F2(w/t ,  M) have been computed for a sum of 
50 t e r m s  and the r e s u l t s ,  plotted on a logar i thmic  
sca le ,  a r e  given in Fig.  3.5. When the geomet ry  of the 
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z 
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100 

1.0 

0.1 0.2 0.3 0.4 0.5 w/k  
Fig. 3.5--The summation F2( w/h. M). 

boundary  is known,  and the va lue  of M is known (or 
can be guessed)  then the s l iding ra te  is ca lcula ted  
s imply  by picking off, f rom Fig.  3.5, the c o r r e s p o n d -  
ing value for the s u m m a t i o n ,  which is then plugged into 
Eq. [19]. 

e) Creep  of a Po tyc rys t a t  by Gra in  Boundary  Sliding, 
with Diffusional  Accommodat ion :  C o m p a r i s o n  

with Resul t s  Due to He r r i ng  s and Cobte,  9 Li fsh i tz ,  t~ 
Gibbs ,  t~ and Green  ~2 

Cons ide r  the deformat ion  of the ideal ized po tyc rys -  
t a l l ine  aggregate  shown in Fig.  3.6. When s t r e s s e d  as 
shown in the f igure ,  this  ideal ized a r r a y  deforms  by 
two modes of s l id ing.  These  a r e  shown by the heavy 
l ines  on the f igure ,  and a r e  labeled as  Mode 1 and 
Mode 2. They a r e  or thogonal ,  so that the net ( eng ineer -  
i ng - shea r )  s t r a i n - r a t e ,  ~, is the sum of the s t r a i n -  
r a t e s  cont r ibuted  by each mode.  In this  way a l l  pos-  
s ib le  flux paths through the g ra in s  of the po tyc rys ta l  
(broken t ines on Fig.  3.6) a r e  c o r r e c t l y  included.  

As pointed out e a r l i e r ,  a good es t ima te  of the s l iding 
ra te  at a boundary  with an obvious bas ic  per iod ic i ty  is 
given by approx imat ing  its shape by a s ine wave of the 
same  per iod ic i ty  and ampl i tude .  Imagine ,  then,  that 
both modes a r e  replaced  by s ine  waves of total  height 
h ~- d /2  and wavelength X --- 2d.  The s l iding ra te ,  U, 
for one mode is then given by Eq. [11] and the e ng i ne e r -  
i n g - s h e a r  s t r a i n  ra te ,  which is the sum of the c on t r i -  
but ions  f rom the two modes ,  is 

2U "ga~ 1 J 7r6 DB ~ 
~/ - d - c leT d 2 D r  [ ~ 1 + - - ~  Dvv [20] 

,m, 

MODE z-......l,,t 
I 

MODE 1 ~ 

[ rQ 

Fig. 3.6--A polycrystal, idealized as an array of hexagons 
can deform by sliding in two orthogonal modes. Broken lines 
show the vacancy flux. 

where  c = 40. If, ins tead ,  the shapes of the two modes 
shown on Fig.  3.6 a r e  descr ibed  by F o u r i e r  s e r i e s ,  the 
r a t e  of s l iding for each is ca lcula ted proper ly  via Eq. 
[9], and the net s t r a i n - r a t e  ca lcula ted  from the sum,  
the only change involves the cons tant  c: it is then equal 
to 42. 

To compare  our  r e su l t  with those of other  au thors ,  
it is convenient  to r e e x p r e s s  it as  follows. A po lyc rys -  
ta l  which deforms  by g r a i n - b o u n d a r y  s l iding with diffu- 
s iona i  accommodat ions  behaves  as if it had a Newto-  
nian v i scos i ty ,  71 , defined by 

= ~a [21] 

where  ~a is the applied shear  s t r e s s ,  and where ,  for 
vo lume diffusion 

1 d2teT 
~Tv- 42 D v s  [22] 

and for boundary  diffusion 

1 d3hT [23] 
~?B = 132 6DB~ 

The de format ion  o f  a po lycrys ta l  descr ibed  by these 
equations is true "d i f fus ioual"  or "Nabarro-Herr ing '"  
c reep .  It is quite c l ea r  from the der iva t ion  presented  
he re  that grain boundary sliding is an integral part  o f  
diffusional creep ,  and that (as Lifshi tz  t~ has pointed 
out) without grain  boundary sl iding no incompatibi l i t ies  
develop,  and no dif fusional creep is poss ib le .  

H e r r i n g ,  8 Coble,  9 and Green  TM have calcula ted the 
diffusionat  s t r a i n - r a t e ,  and thus the v i scos i ty ,  of a 
s ingle  spherical  g r a i n ,  when the s h e a r - s t r e s s  in the 
plane of its su r f aces  is re laxed-- that  i s ,  when gra in  
boundary  s l iding is permi t ted .  H e r r i ng  cons idered  
t r a n s p o r t  by vo lume diffusion,  and obtained in our 
notat ion 

1 d2kT (Herring) 
riv - 40 Dvf~ 
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Coble cons idered* t r a n s p o r t  by boundary  diffusion,  

*Gifkins TM has also presented a calculation of diffusion-controlled deformation, 
which, physically, is equivalent to that of Coble. 

obtaining 

1 dakT (Cobie) 
?TB = 141 6DB~ 

(after co r r ec t i ng  for a factor  of n which was omi t ted  
f rom his paper) .  These  two r e su l t s  a r e  e s sen t i a l l y  
ident ica l  with our  Eqs .  [22] and [23]. 

A s impl i f ied  v e r s i o n  of the r a the r  compl ica ted  c a l -  
cula t ion  of L i f sh i tz ,  for  the compat ib le  de format ion  of 
a po lyc rys ta l  by vo lume diffusion,  has been p re sen t ed  
by Gibbs.l~ He obta ins  

1 d2kT (Gibbs) 
~/v - 36 Dv~ 

which is again e s sen t i a l l y  ident ica l  to H e r r i n g ' s  r e s u l t  
and to our  Eq. [22]. 

Gibbs ,  Li fshi tz ,  and our  ca lcu la t ion  s t a r t  with a 
space - f i l l ing  a r r a y  of g r a i n s ,  and allow them to deform 
in a compat ib le  way,  so that they fit together  both be -  
fore  and a f te r  deformat ion .  A phys ica l ly  r ea l  conse -  
quence of this  is that the s t r e s s  field within the poly-  
c r y s t a l  is not uniform, but va r i e s  g rea t ly  f rom point to 
point in a way which can be ca lcu la ted ,  see Appendix 
2. 

The ca lcu la t ions  of He r r i ng ,  Coble ,  and Green  a r e  
l e s s  r ea l i s t i c :  they avoid the r a the r  compl ica ted  com-  
pat ibi l i ty  p rob lem by t r ea t ing  a g ra in  with a sphe r i ca l  
shape: a shape which does not stack to f i l l  space.  H e r -  
r ing  c o r r e c t l y  points out that the strain-rate ca lcu -  
lated in this  way must  be ve ry  c lose  to that for equi -  
axed,  space - f i l l ing  g r a i n s ,  because  diffusion smoothes  
out the in t e rna l  s t r e s s  f ield:  that is why a l l  the ca l cu -  
la t ions  quoted above gave ve ry  s i m i l a r  a n s w e r s .  But 
if one wishes  to ca lcu la te  the internal s tress  f ield 
prope r ty ,  a ca lcu la t ion  that i nco rpo ra t e s  cont inui ty  of 
m a t t e r  at a l l  s tages  of the de format ion  (which those of 
H e r r i n g ,  Coble,  and Green  do not) is  e s sen t i a l .  Our  
t r e a t m e n t  has the fu r the r  advantage that the effect of 
g r a in  shape can be ca lcu la ted ,  Sect ion 3.2f. 

We wish to conclude this  sect ion by r e e m p h a s i z i n g  
that " N a b a r r o - H e r r i n g "  and " C o b l e "  c reep ,  (which 
together  we ca l l  d i f fusional  c reep)  is identical with 
g r a i n - b o u n d a r y  s l iding with dif fusional  accommodat ion .*  

*A discussion of the role of grain boundary sliding in deformation of polycrys- 
talline materials is given by Gibbs.11 

It has been suggested occas iona l ly  that g r a i n - b o u n d a r y  
s l iding and dif fusional  c reep  a r e  independent  d e f o r m a -  
t ion p r o c e s s e s ,  which add. If diffusion is the only 
mechan i sm  of accommodat ing  the incompa t ib i l i t i e s  
caused by g r a i n - b o u n d a r y  s l id ing ,  diffusional f low and 
sliding are not independent. They are coupled, and the 
resulting deformation is correctly described either as 
"diffusional creep"  or as "'grain boundary sliding 
with diffusional accommodation".  The r e su l t i ng  s t r a i n -  
r a t e  is given by Eq. [20]. 

If deformat ion  occu r s  by equal amount s  of s l id ing on 
two or thogonal  s y s t e m s ,  as desc r ibed  above,  then in a 
t ens i l e  or  c o m p r e s s i o n  tes t ,  g r a in s  do not rota te  but 
they do change shape,  becoming  elongated along the 
t ens i l e  d i rec t ion .  If s l iding occur s  main ly  or  com-  
p le te ly  by one mode,  then in a t en s i l e  or  c o m p r e s s i o n  

i 

/ 

W 

O" 

i # 

%,/" 
/ @,- 

/ /  

"AMPLITUDE h= H 

~WAVELENGTH ~ 2W 

Fig. 3.7--A polycrystal with elongated grains. 

tes t  the g ra in s  ro ta te ,  and need not show any elongat ing 
or  change of shape.  

f) The Effect of G r a i n  Shape on Diffusional  Creep  

Gra in  shape can have a profound effect on the ra t e  
of d i f fus ional  c r e e p - t h a t  i s ,  of s l id ing with dif fusional  
accommodat ion- -of  a po lyc rys t a l .  Cons ide r  the sys t em 
of elongated g r a i n s  shown in  Fig.  3.7, in which the 
g ra in s  have height H and width W. Define the aspec t  
ra t io  R of a g ra in  as R = H/W,  and the g ra in  s ize  d as  
d = (HW) 1/2. Suppose the sys t em is subjec t  to  equal ,  
p r inc ipa l  t ens i l e  and c o m p r e s s i v e  s t r e s s e s  a: these  
a r e  equivalent  to a she a r  r a = a at 45 deg to the p r i n -  
c ipa l  s t r e s s e s .  To a suff ic ient  app rox ima t ion ,  the 
s l id ing can be  cons ide red  to occur  on a path of wave-  
length 2W and of height H/2 .  

Two r e g i m e s  e m e r g e ,  depending on the magni tude  
of the aspec t  ra t io .  Applying the a r g u m e n t  which led 
to Eq. [20] to the elongated g ra in s  yie lds  

Tq~ i {D_Dj2_ w5 DB } 
~ = c  kT d -'-5 + - -  R 2 d R sic [24] 

where  c is a cons tan t  of about 42. This  exp res s ion  is 
val id only for g r a in s  of low aspec t  ra t io  for which 
H z W, s ince  o the rwise  the approx imat ions  inheren t  in 
Eq. [9] a r e  no longer  val id .  We note,  t h e r e f o r e ,  that 
for small devia t ions  f rom an equiaxed shape,  the 
s t r a i n - r a t e  a t t r i bu t ab l e  to vo lume and boundary  diffu- 
s ion r e spec t i ve ly  va ry  s t rong ly  with g ra in  shape:  

R 2 
for R i [25] 

~/3c c 1 Rzla 

F r o m  a p r a c t i c a l  v iewpoint ,  the di f fus ional  c reep  of 
a s y s t e m  of v e r y  elongated g ra in s  (H >> W) is much 
m o r e  i n t e r e s t i ng .  Such s t r u c t u r e s  a r e  obtained in 
doped tungs ten  w i r e s  and T-D nickel  sheet .  An ap-  
p rox ima te  ca lcu la t ion  of the type given by Cot t re l l  ~3 
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yields a result appropriate to very elongated grains 
(Ashby and Raj l<a) : 

kT d 2 + d R llz 

that  is  ; 

1 
~v cc~ f o r R  >> 1 

1 ~L 
YB oc R J-12 

[26] 

[27] 

Tote that  d i f fus iona l  c r e e p  is m i n i m i z e d  by a large 
grain  s i ze  with a large aspec t - ra t io  H / W .  Since the 
a s p e c t  r a t i o  can be  a s  l a r g e  as  100, it  can s ign i f i can t ly  
change  the c r e e p  r a t e .  

g) The Effect  of G r a i n  Boundary  M i g r a t i o n  on the Rate  
of Sl iding and Di f fus iona l  C r e e p  

G r a i n  boundary  s l id ing  in a bicrys ta l  is  v e r y  s e n s i -  
t ive  to boundary  m i g r a t i o n .  M i g r a t i o n  changes  the  
bounda ry  shape ,  so that  the a m p l i t u d e  h and wave length  
;~ d e s c r i b i n g  the shape  change with t i m e .  Then,  a s  r e f -  
e r e n c e  to Eq. [11] shows ,  the  s l id ing  r a t e  wi l l  f luc tua te  
with t i m e .  We b e l i e v e  that  th is  s o r t  of m i g r a t i o n  is  the 
c a u s e  of the i r r e g u l a r  and i r r e p r o d u c i b l e  r a t e s  of s l i d -  

ing often found in bicrystals of pure metals, and de- 
scribed by Stephens I~ in his review. 

The rate of sliding with diffusional accommodation 
(diffusional creep) of a polycryslal is less sensitive 
to boundary migration. Migration may lead to grain 
growth at constant shape: then the creep rate decreases 
with time because d, Eq. [20], is increasing. Or it may 
lead to change of grain shape, such that boundaries 
align themselves parallel to the planes of maximum 
shear stress; though uncommon, such alignment ap- 
pears during high temperature fatigue, and leads to a 
rapid increase of strain rate. Finally, local migration 
may occur with no net change of grain size or shape. 
The average shape of the path along which sliding oc- 
curs, like those sketched Fig. 3.6, does not change with 
time, and the sliding rate with diffusional accommoda- 
tion is unaffected by the migration. 

4.1) SLIDING WITH DIFFUSIONAL 
ACCOMMODATION 

The Three-Dimensional Problem 

Up to this point we have considered boundary shapes 
which were periodic tn only one direction--the direction 
of sliding. But a boundary containing a periodic array 
of precipitate particles or inclusions, which act like 

(a) 

FLOW OF 

x 

GRAIN 
,~BOUNDARY 

= y  

Fig.  4 .1- - (a )  A c u b e - s h a p e d  p a r t i c l e  in a 
g r a i n  b o u n d a r y .  (b) The  e l e c t r o s t a t i c  
a n a l o g  of (a).  
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pegs  which p e n e t r a t e  the bounda ry  p l ane ,  has  p e r i o d i c -  
i ty in two d i r e c t i o n s .  We now c o n s i d e r  the p r o b l e m  
of the  r a t e  of d i f f u s i o n - c o n t r o l l e d  s l id ing  at  a bounda ry  
such as  t h i s ,  one p a r t  of which is  shown in F ig .  4.1(a).  
This  f i gu re  shows a sec t ion  th rough  s ing le  c u b e - s h a p e d  
p a r t i c l e ,  of s i z e  a .  When an app l i ed  s h e a r  s t r e s s  ~a 
c a u s e s  s l i d ing ,  n o r m a l  s t r e s s e s  an a p p e a r  a t  the  f aces  
of each p a r t i c l e .  The a r r a y  of p a r t i c l e s  then b e h a v e s  
l ike a p e r i o d i c  a r r a y  of d i s c r e t e  s inks  and s o u r c e s  
for  v a c a n c i e s .  The d i f fus ion  p r o b l e m  can be  so lved  a t  
a suf f ic ient  l eve l  of a p p r o x i m a t i o n  by an e l e c t r o s t a t i c  
ana log :  the  d i f fus ive  flow round a p a r t i c l e ,  d r i ven  by 
the n o r m a l  s t r e s s e s  a n is  ana logous  to the c u r r e n t  
flow d r iven  by  a su i t ab le  d i s t r i b u t i o n  of c h a r g e ,  F ig .  
4.1(b). This  ana logy  is deve loped  in .Appendix  3, w h e r e  
it is  shown that  the r a t e  of s l i d ing ,  U, a t  a p lane  bound-  
a r y  conta in ing  an a r r a y  of d i s c r e t e  i m p e r m e a b l e  p a r -  
t i c l e s  of s i z e  a and spac ing  k is  g iven by 

U =  1.6 "fa~2 ~2 { 5 D--B-} [28] 
kT  ~ Dv 1 + 5 a D v 

H e r e  T a is  the  app l ied  s h e a r  s t r e s s  ~2 the a t o m i c  n u m -  
b e r ,  D v the  coef f i c ien t  of vo lume s e l f - d i f f u s i o n ,  D B 
that  for  d i f fus ion in the  i n t e r f a c e  be tween  the p a r t i c l e  
and the m a t r i x ,  6 the t h i c k n e s s  of th i s  i n t e r f a c e ,  and 
kT  is  B o l t z m a n n ' s  cons tan t  t i m e s  the  a b s o l u t e  t e m -  
p e r a t u r e .  

Slight modifications of the expression are required 
if the particle itself transmits a diffusive flux, and 
when the particle is coherent in one grain. These are 
discussed in the Appendix. The equations should not be 
treated too literally. The approximations involved in 
their derivation could involve errors of up to a factor 
of 2. Since diffusion coefficients are not known to this 
level of accuracy, we feel that the equations are ade- 
quate for any practical situation. 

4.2) EXAMPLES AND DISCUSSION BASED ON 
TIIE RESULTS OF SECTION 4.1 

a) The Boundary Containing Discrete Particles: 
Comparison With the Result of Gibbs n 

If the particles are sufficiently small, the quantity 

~- P--~ >> 1 
a D v 

and the sliding rate is limited by boundary diffusion. 
(As a rough rule-of-thumb, we anticipate that a particle 
size of less than 1000i w i l l  lead to boundary diffusion 
control; a size of more than lOp to volume-diffusion 
control; and a size inbetween to control by either vol- 
ume or boundary diffusion). The sliding-rate is then 

~B = 8 Ta~ ~2 
leT -~ 5DB [29] 

Note that  big p a r t i c l e s  (large a) s low down the s l id ing 
ra te  m o r e  e f f e c t i v e l y  than the s a m e  vo lume  f r a c t i o n  o f  
s m a l l  p a r t i c l e s .  

One e a r l i e r  c a l cu l a t i on  of the  effect  of p r e c i p i t a t e s  
on grain boundary sliding exists. Gibbs 11 considered 
sliding limited by boundary-diffusion only, and, by a 
somewhat less rigorous argument than ours, obtained 
(in our notation) 

~B_~ 2 T a ~  X 2 
kT -~ 5D B (Gibbs) 

In all important respects this is identical with our 
Eq. [29]. The constant differs by a factor of 4. 

b) Does Grain Boundary Precipitation Limit the Rate 
of Diffusiona} Creep in a Polycrystal? 

Continuum calculations, with which this report is 
main ly  c o n c e r n e d ,  p r e d i c t  that p a r t i c l e s  do v e r y  l i t -  
tle to s low uP the m a c r o s c o p i c  d i f fus ional  c reep  of a 
polycrystah This conclusion, given earlier by Gibbs, I' 
can be reached by comparing the sliding rate of a plane 
boundary containing an array of particles, Eq. [28], 
with that for a path through a polycrystal, Section 3.2e. 
For all realistic values of particle size and spacing, 
it turns out that the grain size, not the particle size, 
limits the sliding r a t e .  

This conclusion ignores the microscopic aspects of 
diffusional creep. There is some evidence that a dis- 
persion of particles can restrict the ability of a grain 
boundary to emit or absorb vacancies, and can inter- 
fere in other ways with the details, at an atomic level, 
of the sliding process (Ashby3). Crudely, the result is 
to introduce a threshold stress below which no diffu- 
siona[ creep can occur. 

More important, an array of particles (or even of 
bubbles or voids) can profoundly alter the grain shape, 
and with it, the sliding rate as described in Section 
3.2f.  The  c l a s s i c  e x a m p l e  a p p e a r s  to be  tha t  of tung-  
s t en  w i r e .  P u r e  tungs ten  (and mos t  o t h e r  bcc  m e t a l s )  
r e a d i l y  f o r m s  a bamboo  s t r u c t u r e ,  c o n s i s t i n g  of n e a r l y  
planar  b o u n d a r i e s .  A d i s p e r s i o n  of bubbles  in t roduced  
by " d o p i n g "  (which a lone  cannot  h inde r  the  s l id ing  
p r o c e s s )  o r  of t h o r i a ,  r e s u l t s  in e longa ted ,  i n t e r l o c k e d ,  
and e x t r e m e l y  wavy  g r a i n s ,  wi th  a g r e a t  r e s i s t a n c e  to 
s l id ing  d e f o r m a t i o n .  

5) SUMMARY 

i) Grain boundaries are seldom perfectly planar. 
When a shear stress causes sliding to occur at a 
grain boundary, some accommodation process is nec- 
essary where the boundary deviates from a perfect 
plane. This process almost always determines the 
extent and rate of sliding. 

2) The accommodation may be purely elastic; or it 
may be diffusional; or it may involve plastic flow by 
dislocation motion. This paper considers in detail the 
elastic and diffusional accommodation required when a 
boundary of arbitrary shape slides. 

3) When a c c o m m o d a t i o n  is  pure ly  e l a s t i c ,  i n t e rna l  
s t r e s s e s  grow a s  s l id ing  p r o c e e d s ,  unt i l  the  a p p r o p r i -  
a t e  component  of t hem exac t ly  b a l a n c e s  the  app l i ed  
s t r e s s ,  when s l id ing  s tops .  The p a p e r  con ta ins  equa-  
t ions  which g ive  the  to ta l  amount  of s l id ing  at  a bound-  
a r y  of arbitrary shape, and the internal stress-field 
developed by the sliding, Section 2.1. 

4) These equations are applied, in Section 2.2 to 
a) a boundary of sinusoidal shape, b) a saw-tooth and 
a stepped boundary, and c) a polycrystal; it is shown 
that the total amount of sliding is usually very small, 
but it leads to an apparently lower shear modulus 
(Zener relaxation). Its rate is related to the intrinsic 
viscosity of the boundary plane, but since its magnitude 
is small, most measurements of sliding rate do not 
measure this intrinsic viscosity (internal friction is an 
exception). 
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5) When accommoda t ion  is by d i f f u s i v e  f l o w  o f m a # e r  
f rom one par t  of the boundary  to ano ther ,  a different  
i n t e r n a l  s t r e s s  field is set  up. The paper  conta ins  
equat ions for the ra te  of s l id ing,  and the s t r e s s  field, 
at  a boundary  of a r b i t r a r y  shape when accommodat ion  
is dif fusional .  Both bulk and boundary  diffusion a r e  
cons ide red ,  Sections 3.1 and 4.1. 

6) These  equat ions a r e  applied to: 
a) A boundary  of s inuso ida l  shape.  
b) A stepped boundary ,  with per iod ic ,  s y m m e t r i c a l  

s teps ;  the r e s u l t s  a re  compared  with a m o r e  l imited 
ca lcu la t ion  due to Gifkins and Snowdon, which we con-  
s ide r  to be i n c o r r e c t .  

c) A m o r e  gene ra l ,  u n s y m m e t r i c a l  stepped boundary.  
d) The c reep  of a po lyc rys t a l  by g ra in  boundary  

s l id ing with dif fusionai  accommoda t ion ;  this  is t rue  dif-  
fus ional  c reep .  The r e su l t s  a r e  compared  with,  and 
a g r e e  well  with,  those of H e r r i n g ,  Coble,  Li fsh i tz ,  
Gibbs ,  and Green .  

e) The effect of g ra in  shape on dif fusional  c reep:  
elongated g ra in s  can g rea t ly  r e t a rd  it. 

f) The effect of g ra in  boundary  mig ra t i on  on diffu- 
s ional  c reep :  in a po lyc rys t a l  the effect is  genera l ly  
s m a l l  un l e s s  g ra in  growth o c c u r s ;  in a b i c r y s t a l  the 
effect can be la rge ,  and lead to an i r r e g u l a r  s l iding 
ra te .  

g) The r a t e  of s l iding at a p lanar  g r a m  boundary  
conta in ing prec ip i ta te  pa r t i c l e s  or  i n c l u s i o n s ; t h e  r e -  
sul t  is compared  with,  and suppor ts  the form of, a 
m o r e  l imi ted r e su l t  due to Gibbs .  

h) The influence of p rec ip i t a tes  o r  inc lus ions  on the 
diffusional  c r eep  of a po lyc rys ta l ;  the effect is usual ly  
s m a l l ,  though mic roscop ic  p r o c e s s e s  and the effect of 
pa r t i c l e s  on gra in  shape may inf luence it ,  Sections 
3.2 and 4.2. 
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APPEND~ 1 

SLIDING WITH ELASTIC A C C O M M O D A T I O N  

The Two-Dimens iona l  P r o b l e m  

If the shape of any g ra in  boundary  has a two-fold axis  
of s y m m e t r y  and has bounded f i r s t  de r iva t i ve s ,  it may 
be desc r ibed  by a cos ine  F o u r i e r  s e r i e s :  

27r 
x = hn cos ~ -  ny [A1] 

1 

The th i ckness  of the b i c r y s t a i  in a d i rec t ion  n o r m a l  to 
the boundary  plane is cons idered  to be la rge  compared  
to X, (the bas ic  wavelength of the boundary  shape) so 
that condi t ions  of plane s t r a i n  apply.  A shea r  s t r e s s  
r a is applied in the y d i rec t ion  as shown in Fig.  2.1, 

caus ing  the upper  h a l f - c r y s t a l  to s l ide over  the lower 
one in the boundary  plane.  The net re la t ive  d i sp lace -  
ment  of the two c r y s t a l s ,  p a r a l l e l  to the y - a x i s ,  is U 

1 - -  which we imagine  as a d i sp lacemen t  of g U of the upper  
h a l f - c r y s t a l  to the r ight ,  and an equal d i sp lacement  of 
the lower one to the left. F o r  convenience  we cons ider  
only the lower c r y s t a l ,  i . e .  the region - ~  -- y <-- ~ ,  
+~ <- x-< 0. As a resu l t  of the s y m m e t r y  of the prob-  
lem the d i s p l a c e m e n t s ,  s t r e s s e s ,  and sl iding in the 
upper  c rys t a l  a r e  complemen ta ry .  If each ha l f - c ry s t a l  
we re  r ig id ,  then a sl iding d i sp lacemen t  U / 2  of one 
h a l f - c r y s t a l  would produce tangent ia l  d i sp lacemen t s  
U t and n o r m a l  d i sp l acemen t s  U .  in the boundary  su r -  
face,  where  

ut =gcoso--- g 

- -  U U d x  [A2] 
U n = ~ s i n 0 ~ -  2 dy  

2~ 
7r n h  n s i n - s  n y  =--5-;  1 

The as sumpt ion  here  that 0 is suff ic ient ly  sma l l  that 
cos 0 ~ 1 and s in  0 ~ tan 0, can in t roduce e r r o r s  of o r -  
der  ~2- only when the ampl i tude  h of the boundary  ex- 
ceeds  half the wavelength X. We no rma l ly  cons ider  
boundar ies  for which h << ~. 

Suppose now that some d i s t r ibu t ion  of n o r m a l  s t r e s s ,  
an, acts  a c r o s s  the boundary  as  shown in Fig.  2.1. Let 
this  be desc r ibed  by a F o u r i e r  s e r i e s ,  which by sym-  
m e t r y  must  have the form 

2~ 
a n = ~ ~ c~ n s i n  ~ -  ny  [A3] 

1 

where  y has the d imens ions  of s t r e s s ,  and the ot's a r e  
n u m e r i c a l  coeff ic ients  to be de t e rmined .  Mechanical  
equ i l ib r ium in the boundary  plane r e q u i r e s  that 

+(x/2) 
d x  

t a X -  f a n "~y dy  = 0 in4]  
-(x/2) 

which leads to the following value  for  7: 

"r~lh [AS] ~] = -- oo 

~ n~.h~ 
1 

The procedure  for evaluat ing ot n is s t ra igh t forward ,  
but messy .  It involves ca lcu la t ing  the d i sp lacement  
field due to the n o r m a l  s t r e s s  d i s t r ibu t ion  of Eq. [A3], 
and equating the appropr ia te  component  to that caused 
by s l id ing,  as  follows.  We have a s s u m e d  the boundary  
to have a sma l l  ampl i tude - to -wave leng th  ra t io .  If we 
now a s s u m e  the boundary  to be flat but apply to it the 
same  boundary  condit ions as  we did to the wave- l ike  
boundary ,  we in t roduce only s e c o n d - o r d e r  e r r o r s .  
The vec to r s  n and t now coincide with our  " x "  and 
" y "  axes .  We may now use a s tandard  r e su l t  of e l a s -  
t ic i ty  theory (Timoshenko and Goodier  T M ) ,  name ly  that ,  
under  condi t ions  of plane s t r a i n ,  a s inuso ida l  sur face  
s t r e s s  ex(0, y) = ~ s in  (2 ~r/X)y, rxy(0, y) = 0 leads to 
the following i n t e rna l  s t r e s s  d i s t r ibu t ion :  
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2 ~r x l  e_(2v/x) x 2 ay=  a 1 - - - s  s i n - - f f - y  

~-xy = - a  - -  x e -(2~/x)x cos--if- y 

a z = u(a x + ay) 

[A6] 

Applied to 

a x = ~  

ay = y  

the genera l  boundary  shape,  these  become:  

[ 27r x,]e-(2~/X)nx 2~ a n 1+  - z n  s i n - ~ n y  
1 

~,  an - - - n  e-(2nA) nx s i n ~ - n y  

' [AT] ~ 2~ 
= an nxe-(27r/X) nx cos ~ -  ny 7xY --Y 1 

az = V[ax + Cry ] where  - ~  -< y -<- 

+oo --< X -- < 0 

Applying the cons t i tu t ive  r e l a t ions  to Eqs .  [A7 ] we 
obtain the e las t ic  s t r a i n s :  

(1+~,)  5 a n [ ( 1  2v)+_~nx;e_(27r/X)n x 
e x -  E Y 1 

2zr x sin - f - n y  

Ey E V (1 2 u ) -  2~ e_(2~/X)nx 
1 

2n  
• sin - ~ n y  

2~ - (1  + v) ~1 an ~ - n x  e-(2~r/a) nx exY E Y 

2~r 
x cos -~- ny 

where E is Young's  modulus  and v is P o i s s o n ' s  ra t io .  
The n o r m a l  d i sp l acemen t  of the boundary  sur face  is  
ca lcula ted f rom 

i + 0",7 
exY = 2 L ~Y ax l 

Different ia t ing  with r e spec t  to y and r e a r r a n g i n g  t e r m s  
we obtain 

s y 8 ey 
a~u x _ 2 where  x >  0 
0y2 8y 8x 

This  y ie lds :  

(02Ux~ _ ( 1 -  u 2) ~r 4yn  2nny  
- -\-o-~/o,y E ~ ~ ~ - 7 -  sin 

Integration gives: 

ux(O ' y) _ - 2  (1E- u 2) Y ~X ~ ~-an s in  --~-ny2 g [A8] 

Equating this  e las t ic  d i sp l acemen t  to the n o r m a l  d i s -  
p lacement  of equation [A2], and equating coeff ic ients  
(since the equation mus t  hold for a l l  y),  we obtain:  

a n = ~/2hr t 

Substi tut ing this into the equation for u x , and the Eq. 
[A3] for  a n ,  leads immedia te ly  to the r e s u l t s  [2] and 
[3] of Section 2. The s t r e s s  f ie lds  within the c r y s t a l s  
can be obtained via Eq. [A7]. 

APPENDIX 2 

SLIDING WITH DIFFUSIONAL ACCOMMODATION 

The T w o - D i m e n s i o n a l  P r o b l e m  

Cons ide r  s t e ady - s t a t e  s l iding at a gene ra l  boundary  
with a shape de sc r i be d  by the F o u r i e r  s e r i e s ,  Eq. [1], 
Dur ing  s t e a d y - s t a t e  s l id ing,  vacanc i e s  a r e  ne i the r  
c rea ted  nor  absorbed  within the two c r y s t a l s :  the 
boundary  is the only source  or  s ink.  This  means  that 
the d ive rgence  of the flux, div J-, is ze ro  wi thin  both 
c r y s t a l s ,  o r ,  equiva lent ly ,  that the Laplac ian  of the 
chemica l  po ten t ia l ,  ~, be zero  wi thin  each c ry s t a l :  

V2~(x, y) = 0 [B1] 

The flux field for vacanc ie s  within the c r y s t a l s  is ob-  
ta ined by solving this  equation subject  to boundary  con-  
di t ions  which e n s u r e  chemica l  e q u i l i b r i u m ,  mechan i ca l  
e q u i l i b r i u m ,  and cont inui ty  (or compat ib le  deformat ion)  
in the boundary .  

Chemical  equi l ibrium in the boundary  plane means  
that the chemica l  potent ia l  p of vacanc ie s  at ,  and im-  
media te ly  ad jacent  to a point on the boundary  is re la ted  
to the n o r m a l  s t r e s s  a n act ing on the boundary  at that 
point:  

= ~ o -  an~2 (at the boundary)  [B2] 

where  ~ is the a tomic  vo lume,  and ~o the chemica l  po- 
t en t i a l  app ropr i a t e  to a s t r e s s - f r e e  r e f e r e n c e  s ta te .  

As in Appendix 1, let the d i s t r ibu t ion  of n o r m a l  
s t r e s s ,  an,  ac t ing a c r o s s  the boundary  su r f ace ,  be de-  
sc r ibed  by the F o u r i e r  s e r i e s  [A3]. Then mechanical  
equi l ibrium l eads ,  as  be fore ,  to the r e l a t ionsh ip  [A5]. 
Here ,  however ,  the p a r a l l e l i s m  with Appendix 1 ends:  
the coeff ic ients  a n a r e  de t e rmined  he re  by solut ion of 
the diffusion equat ion,  and a r e  quite d i f ferent  f rom 
those obtained via Hookes law in Appendix 1. 

Solution of Eq. [B1] subject  to these  boundary  condi-  
t ions  s t i l t  l eaves  the coeff ic ients  an as  unknowns.  
These  a r e  d e t e r m i n e d  by the continuity condition, 
which we now de r ive .  S teady-s ta te  s l iding r e q u i r e s  
that the flux of a toms  (or coun te r - f lux  of vacanc ies )  
into each e lement  of the boundary  p r e c i s e l y  account  
for the change in vo lume of the e lement  due to s l id ing.  
The e lement  E of Fig.  3.1 is shown in deta i l  in Fig.  B1. 
It has width AS. In t ime  e lement  A t t h e  s l iding d i s -  
p l acemen t  is UAt and a vo lume aSUAt s in  0 of ma t t e r  
mus t  be pumped out of the e l ement .  F r o m  here  on we 
approx imate  the boundary  as  the plane (0, y) in t roducing 

,Jr (o,y) �9 

~V~////A ~ unt 

I..__.~ Ov(O,y) 
IAYl 

= y  

Fig. B1--Details of the element E of Fig. 3.1. Vacancies en- 
ter and leave the element via a boundary flux JB, and a flux 
through the crystal J~.. 
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only e r r o r s  of second  o r d e r  if h << X, and e r r o r s  of 
o r d e r  4-27 when h - X/2. The cont inu i ty  equat ion ,  which 
can be unde r s tood  by r e f e r r i n g  to F ig .  131 is then 

~AtZ~S s in  0 : a a t { -2gvX(0  , y)AS 

- + - [ B 3 ]  

H e r e  j x  is  the  vo lume  d i f fus ion  flux of v a c a n c i e s :  
s i n c e  v a c a n c i e s  a r e  g e n e r a t e d  o r  a b s o r b e d  only  at  the  
bounda ry ,  t h i s  flux at  the  boundary  p lane  has  an x -  
component  on ly .  JB y is  the  d i f fus iona l  f lux of v a c a n c i e s  
in the  p lane  of the g ra in  bounda ry ;  it has  a y - c o m p o -  
nent  only .  5 is  the t h i c k n e s s  of the  g r a i n  bounda ry  and 
m e a s u r e s  the  a r e a  a c r o s s  which the boundary  flux 
p a s s e s .  The a t o m i c  vo lume is ~2. 

Apply ing  ou r  usua l  a p p r o x i m a t i o n  that  the s lope  of 
the  bounda ry ,  tan 0 = dx /dy  ~ s in  0 and that  A S / A y  
= cos  0 ~ 1, and a l lowing  the  i n c r e m e n t a l  d i s t a n c e s  
Ay and so for th  to b e c o m e  i n f i n i t e s i m a l ,  g ives  for  the 
cont inui ty  equat ion:  

6 d J ~  -U dx  [B4] 
- J ~ ( O ,  y )  - ~ dy  - 2 ~t dy 

The d i f fus iona l  f luxes  of v a c a n c i e s  a r e  r e l a t e d  to the  
g r a d i e n t s  of c h e m i c a l  po ten t i a l  by 

- -  Dv Vp(x, y) 1 Jv(x '  Y) : - nk----T 

dY(y)  _ DB dlz (0, y)  
~ k T  dy 

w h e r e  D v is  the s e l f - d i f f u s i o n  coef f ic ien t  for  vo lume 
di f fus ion ,  D B is  that  for  boundary  d i f fus ion,*  and k is 

*Strictly speaking, the correct diffusion coefficients Dv/f v and DB/f B should be 
employed; here D v and D B are the tracer diffusion coefficients and fv and fB are 
the correlation factors. A reader requiring an exact solution should make this re- 
placement. For simplicity in this paper the correlation factors are assumed to be 
close to unity, and are omitted. 

B o l t z m a n n ' s  cons tan t  and T the a b s o l u t e  t e m p e r a t u r e .  
We may  now r e f o r m u l a t e  the  p r o b l e m  a s  fo l lows .  

We r e q u i r e  a so lu t ion  to the equat ion 

V2~(x, y) : 0 

Subject  to the  bounda ry  cond i t ions  

y)  : 4 .  s in  . y  

1 , , t  f [ B 6 ]  
~(~o, y) : ~o 

The a p p r o p r i a t e  solut ion has  the fo rm 

/ 2  ~nx\  
~(x, y) = ~ A n e x p -  ~ - - ~ - - - ) s i n ~  + C 

1 )t 

Apply ing  the 
l eads  to 

bounda ry  cond i t ions ,  which hold for  a l l  y ,  

C = ~ t o  

A n = _ ~ yot n 

Subst i tu t ing  in Eqs .  [B5] g ives  the f luxes  

Dy 
j x  (0, y ) : + ~ -  f~ ~ 51 2xTrn a n s in  2 xTrny 

dJ~ D B z 
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Substituting these into the continuity equation [B4] 
yields 

Otn (nDv + ~6 neDB) s in  
2 ~  

I ~ -  -~ -ny  

1 

This  equat ion mus t  a l so  hold for  a l l  va lue s  of y ,  so that  

v 

a n d  

: _ ! [ B S ]  
kT K 

H e r e  K is  an a r b i t r a r y  cons tan t .  By subs t i tu t ing  for  ~, 
in Eq.  [BS] and e l imina t ing  K and Otn, Eq.  [B7] y i e ld s  a 
f ina l  e x p r e s s i o n  for  the  s l id ing  r a t e ,  U,  p r e s e n t e d  in 
the text  Eq. [9]. A s i m i l a r  subs t i tu t ion  into Eq.  [A3] 
y i e l d s  the d i s t r i b u t i o n  of n o r m a l  s t r e s s ,  p r e s e n t e d  as  
Eq.  [10]. The e n t i r e  s t r e s s  f ie ld within each c r y s t a l ,  
if it is  d e s i r e d ,  can be obta ined  by in se r t i ng  the e x p r e s -  
s ions  for  y and ot n into Eqs .  [AT]. 

A P P E N D I X  3 

SLIDING WITH DIFFUSIONAL ACCOMMODATION 

The T h r e e - D i m e n s i o n a l  P r o b l e m  

A) THE ELECTROSTATIC ANALOG 

C o n s i d e r  a bounda ry  conta in ing  w e l l - s e p a r a t e d  cubic 
p a r t i c l e s ;  one is  shown in F ig .  4.1(a) .  We f i r s t  so lve  
the  ana logous  e l e c t r o s t a t i c  p r o b l e m ,  Fig .  4.1(b), r e -  
p l ac ing  the s t r e s s e d  body by a body having a f ini te  
spec i f i c  conduc t iv i ty ,  and conta in ing  s o u r c e s  and sh lks  
for  c ha rge .  These  s o u r c e s  and s inks  we imagine  as  
e l e c t r o d e s  held at  a po ten t ia l  d i f f e r e n c e  & V. Then the 
c u r r e n t  I flowing be tween  the e l e c t r o d e s  i s :  

I = / ~ V  [Cl ]  

w h e r e  K is  the conduc t iv i ty  of the  body as  seen  by the 
e l e c t r o d e s .  Each  e l e c t r o d e  f o r m s  an equ ipo ten t ia l ,  and 
the c u r r e n t  flow is n o r m a l  to i ts  s u r f a c e .  We a p p r o x i -  
ma te  the d i f fus ion f ie ld  by the ana logous  e l e c t r o s t a t i c  
f i e ld  due to four  point  c h a r g e s  of s t r e n g t h  • p laced  
at  c o o r d i n a t e s  [ •  •  0] which form the cen -  
t e r s  of the f aces  of the  upper  and lower  ha lves  of the 
p a r t i c l e .  F r o m  G a u s s '  Law these  c h a r g e s  may  be r e -  
p l aced  by four n e a r l y  s p h e r i c a l  equipoten t ia [  s u r f a c e s  
E • containing the c h a r g e s  +q. We wi l l  a s s u m e  that  the 
c e n t e r s  of t h e s e  s u r f a c e s  l ie  on the  s u r f a c e  of the p a r -  
t i c l e ,  and that  they  p a s s  through the points  [•  
•  0] a s  shown in the f igure .  (We have t r i e d  o t h e r  
g e o m e t r i e s ,  and f ind that the  f inal  r e s u l t  is  i n sens i t i ve  
to a s s u m p t i o n s  conce rn ing  the fo rm of the equipoten-  
t i a l s  .) 

The conductance  K of the body can be ca l cu la t ed  
f rom the equiva lent  e l e c t r o s t a t i c  p r o b l e m  (Reitz and 
Mi l fo rd  ~7) and is : 

K = K] Q I [C2] 
e l A Y ~  

w h e r e  K is the  spec i f i c  conduc tance ,  �9 is  the d i e l e c t r i c  
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c o n s t a n t  and I Q  I the  t o t a l  c h a r g e ;  thus  I Q I  = Z l q l .  
I AV I is the  p o t e n t i a l  d i f f e r e n c e  b e t w e e n  the  e l e c -  
t r o d e s .  T h i s  we  ob t a in  f r o m  t h e  p o t e n t i a l  f u n c t i o n  
V(x,  y ,  z) ,  w h i c h  is  t he  a l g e b r a i c  s u m  of t he  p o t e n t i a l s  
due  to e a c h  of t he  fou r  poin t  c h a n g e s  t h u s :  

V ( x ,  y ,  z )  = (V, + 112 + Va + �88 

w h e r e  �89 and so  f o r t h  a r e  t he  p o t e n t i a l s  due  to c h a r g e s  
n u m b e r  1, 2, 3, and 4 as  shown on F i g .  4.1(b):  

~ -  q 1 

" [ ( x + ~ ) "  + ( y + 2 ) 2  +Z~]  t'2 

and so on.  T h e  r e q u i r e d  p o t e n t i a l  d i f f e r e n c e  b e t w e e n  
two of the  e q u i p o t e n t i a l  s u r f a c e s  is  I A V 1 = I E + - E -  I 
w h e r e  

4,0), t E + I  = I E - t  = I V  : ~ ,  

I Lx V I is e a s i l y  e v a l u a t e d  a s  

4 .8  q 
A V ~  a s 

Subs t i t u t i ng  th i s  into Eq .  [C2],  and no t ing  tha t  I Q J 
= 4q we  h a v e  

K v = 0.83aK v 

w h e r e  Kv is the  b u l k ,  o r  v o l u m e  c o n d u c t i v i t y  of  the  
body  con t a in ing  t h e  e l e c t r o d e s ,  and K v is  the  s p e c i f i c  
v o l u m e  c o n d u c t i v i t y .  

T r a n s p o r t  by g r a i n  b o u n d a r y  d i f f u s i o n  i m p l i e s  
s p e c i f i c  b o u n d a r y  c o n d u c t a n c e  K B w h i c h  d i f f e r s  f r o m  
tha t  of the  v o l u m e .  F o r  th i s  c a s e  t he  s t a n d a r d  r e l a t i o n  
b e t w e e n  c o n d u c t a n c e  and s p e c i f i c  c o n d u c t a n c e  c a n  be  
u s e d ,  g iv ing  

K B = 2 5K B 

w h e r e  6 is t h e  t h i c k n e s s  of the  h igh  c o n d u c t i v i t y  l a y e r ,  
t h a t  i s ,  t he  b o u n d a r y  t h i c k n e s s .  T h u s  t h e  ne t  c o n d u c -  
t i v i t y  of  t he  body is  

K = 0.8a~ v + 26~ B [C3] 

In m a n y  d i f f u s i o n  p r o b l e m s  the  p a r t i c l e  i s  c o m p o s e d  
of  a c h e m i c a l l y  d i f f e r e n t  m a t e r i a l  t h r o u g h  w h i c h  no 
d i f f u s i v e  f lux p a s s e s ,  i ,  e .  the  p a r t i c l e  i s  i m p e r m e a b l e .  
T h i s  l o w e r s  the  v o l u m e  c o n d u c t i v i t y  by a f a c t o r  w h i c h  
we  w i l l  a s s u m e  to be  0 .5 ,  g i v i n g  f o r  the  ne t  c o n d u c -  
t i v i t y  (0.4ag v + 25~B).  

F i n a l l y ,  m a n y  r e a l  s y s t e m s  c o n t a i n  p a r t i c l e s  w h i c h  
a r e  c o h e r e n t  w i th  one  g r a i n ,  but  i n c o h e r e n t  w i t h  t he  
o t h e r .  P r e s u m a b l y  the  c o h e r e n t  s u r f a c e s  canno t  ac t  
a s  s i n k s  and s o u r c e s .  T h e  e l e c t r o s t a t i c  a n a l o g  b e -  
c o m e s  a p a i r  of  po in t  c h a r g e s ,  1 and 4 in F i g .  4 .1(b) ,  
i n s t e a d  of f ou r .  T h e  r e s u l t i n g  c o n d u c t a n c e ,  f o r  a p e r -  
m e a b l e  p a r t i c l e  b e c o m e s  (0.3aK v + 5K B) and f o r  an  i m -  
p e r m e a b l e  one  (O.15ag v + 6KB). 

B) APPLICATION TO THE DIFFUSION PROBLEM 

Comparing the equation for the electric flux 

J = - ~ V V  

w i t h  tha t  fo r  d i f f u s i v e  f lux  

- -  D ~ t  
d - f~ kT  

w h e r e  V V  and V ~  a r e  r e s p e c t i v e l y  t h e  g r a d i e n t s  of 
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e l e c t r i c  and c h e m i c a l  p o t e n t i a l ,  we  f ind 

Dv 
Kv = ~teT 

DB 
KB - ~2 k T  

w h e r e  D v and D B a r e  t he  v o l u m e  and b o u n d a r y  d i f fu -  
s i v i t t e s .  I n s e r t i n g  t h e s e  e x p r e s s i o n s  in to  E q .  [C3] 
g i v e s  the  " d i f f u s i v e  c o n d u c t a n c e "  KDif  of t he  body .  
T h e  t o t a l  f low of v a c a n c i e s  round  the  p a r t i c l e  i s  r e -  
l a ted  to t he  d i f f e r e n c e  in p o t e n t i a l  A N b e t w e e n  the  two 
s i d e s  of t he  p a r t i c l e  by  

I = KDif  Abt [ C 4 ]  

(1 is  a n u m b e r  of v a c a n c i e s  f l owing  round  the  p a r t i c l e  
p e r  s ec ) .  

Suppose  the  s l i d i n g  r a t e  at  the  b o u n d a r y  is  U.  T h e n  
c o n s e r v a t i o n  of  m a t t e r  r e q u i r e s  tha t  

~ a  2 
i - 2 a [ c 5 ]  

We r e l a t e  the  c h e m i c a l  p o t e n t i a l  d i f f e r e n c e  /x~ to t he  
a p p l i e d  s t r e s s  7 a by  an  e n e r g y  a r g u m e n t .  We r e q u i r e  
tha t  d u r i p g  an i n c r e m e n t  of  s l i d i n g  USt,  t h e  e x t e r n a l  
w o r k  ~-aff6t is  e q u a l  to t h e  e n e r g y  d i s s i p a t e d  w i t h i n  t he  
body .  T h i s  is  15tANV, w h e r e  N is  t he  n u m b e r  of p a r -  
t i c l e s  of s i z e  a p e r  uni t  a r e a  of b o u n d a r y .  T h i s  l e a d s  
to 

. - t _  

So lv ing  t h e s e  e q u a t i o n s  f o r  U g i v e s  

--" 4 a aKDif~'a [C7] 
U - Na 4 

I n s e r t i n g  a p p r o p r i a t e  v a l u e s  f o r  t he  d i f f u s i o n a l  c o n -  
d u c t a n c e  KDi  f f r o m  E q s .  [C3],  and r e p l a c i n g  N by 1/X z 
w h e r e  X is  t h e  p a r t i c l e  s p a c i n g ,  w e  ob t a in  

_~'raf~ X2 { 5 D B }  
: 3.2 ~ g D v  1 + 2.5 -a~vv [CSa]  

f o r  a p e r m e a b l e  p a r t i c l e ,  i n c o h e r e n t  in bo th  g r a i n s ;  

�9 a a  x z 5 
) =  1 . 6 - ~ - T - - ~ D  v 1 + 5-a Dvv [C8b] 

f o r  an  i m p e r m e a b l e  p a r t i c l e  (i .  e .  o n e  t h r o u g h  w h i c h  
no d i f f u s i o n  can  o c c u r )  i n c o h e r e n t  in b o t h  g r a i n s  ; and 
so  on .  
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